
Celest Mech Dyn Astr
DOI 10.1007/s10569-013-9522-7

ORIGINAL ARTICLE

Orbit and uncertainty propagation: a comparison
of Gauss–Legendre-, Dormand–Prince-, and
Chebyshev–Picard-based approaches

Jeffrey M. Aristoff · Joshua T. Horwood ·
Aubrey B. Poore

Received: 23 April 2013 / Revised: 10 July 2013 / Accepted: 27 September 2013
© Springer Science+Business Media Dordrecht 2013

Abstract We present a new variable-step Gauss–Legendre implicit-Runge–Kutta-based
approach for orbit and uncertainty propagation, VGL-IRK, which includes adaptive step-
size error control and which collectively, rather than individually, propagates nearby sigma
points or states. The performance of VGL-IRK is compared to a professional (variable-
step) implementation of Dormand–Prince 8(7) (DP8) and to a fixed-step, optimally-tuned,
implementation of modified Chebyshev–Picard iteration (MCPI). Both nearly-circular and
highly-elliptic orbits are considered using high-fidelity gravity models and realistic integra-
tion tolerances. VGL-IRK is shown to be up to eleven times faster than DP8 and up to 45 times
faster than MCPI (for the same accuracy), in a serial computing environment. Parallelization
of VGL-IRK and MCPI is also discussed.

Keywords Implicit Runge–Kutta · Uncertainty propagation · Satellites · Variable step

1 Introduction

Precise orbit propagation is needed for many functions in space situational awareness (SSA)
such as tracking, catalog maintenance, conjunction analysis, maneuver detection, and object
characterization. As the number of objects that must be tracked, cataloged, and characterized
grows from tens of thousands to hundreds of thousands due in part to potential collision
events in the future and improved sensors, fast and adaptive algorithms for orbit propagation
are needed to handle the ever-increasing computational demand without sacrificing accu-
racy. What is more, efficient methods for uncertainty propagation, which typically involve
the propagation of multiple orbital states, are needed to support advanced space surveillance.
The need to properly and efficiently characterize uncertainty in a space object’s orbital state
(i.e., covariance and uncertainty realism) is, in fact, one of the findings made by the National

J. M. Aristoff (B) · J. T. Horwood · A. B. Poore
Numerica Corporation, Loveland, CO, USA
e-mail: jeff.aristoff@numerica.us

123

J. M. Aristoff et al.

Table 1 Summary of the propagators evaluated in this study

VGL-IRK DP8 VGL-s MCPI

Runge–Kutta type Implicit Explicit Implicit Implicit
Runge–Kutta scheme Gauss–Legendre Dormand–Prince Gauss–Legendre Gauss–Chebyshev
Implemented by Aristoff et al. Brankin et al. (1991) Jones (2012) Aristoff et al.

Variable-step Yes Yes Yes No

A-stable Yes No Yes Yes

Parallelizable Yes No Yes Yes

Symmetric Yes No Yes Yes

Symplectic Yes No Yes No

Superconvergent Yes No Yes No

Gauss–Legendre and Gauss–Chebyshev (Lobatto) are implicit Runge–Kutta schemes. Dormand–Prince is an
explicit Runge–Kutta scheme. Variable-step methods estimate and control the numerical truncation error by
adaptively adjusting the step size based upon an estimate of the numerical truncation error. A-stable methods do
not exhibit instability problems when solving stiff equations. Parallelizable methods do not require sequential
evaluation of the force model over a given time step. Symmetric schemes preserve time-reversibility of a
dynamical system (if applicable). Symplectic schemes preserve the Hamiltonian of a system (if applicable).
Superconvergent schemes achieve the highest possible convergence rate (i.e., an s-stage method achieves
order 2s

Research Council’s recent assessment of Air Force Space Command’s Astrodynamics Stan-
dards (Nielsen et al. 2012).

The purpose of this paper is to (1) present a new variable-step Gauss–Legendre implicit-
Runge–Kutta-based approach for orbit and uncertainty propagation (VGL-IRK), (2) demon-
strate the viability of VGL-IRK for precise orbit and uncertainty propagation in a realis-
tic simulation environment, and (3) consider alternative Runge–Kutta-based approaches for
orbit and uncertainty propagation such as modified Chebyshev–Picard iteration (MCPI) and
Dormand–Prince. The general theory of Gauss–Legendre implicit Runge–Kutta and its use
for orbit and uncertainty propagation was presented in a companion paper (Aristoff et al.
2014). Here it will be shown that VGL-IRK is up to eleven times faster than Dormand–
Prince 8(7) and up to 45 times faster than a fixed-step, optimally-tuned MCPI (for the same
accuracy), in a serial computing environment. Parallelization of MCPI and VGL-IRK will
also be discussed. Table 1 lists the propagators evaluated in this study, as well as their under-
lying mathematical properties. We begin by reviewing state-of-the-art numerical methods for
orbit propagation and motivating the need for variable-step error estimation and control.

2 Background

Orbit propagation for SSA requires finding precise (numerical) solutions to the equations of
motion [i.e., second-order initial value problems (IVPs)]. Numerous numerical integration
methods can be used for this purpose, some of which have been specialized to the problem
of orbit propagation (Montenbruck 1992; Montenbruck and Gill 2000; Jones and Ander-
son 2012). Current state-of-the-art numerical integrators used for orbit propagation include
Dormand–Prince 8(7) (DP8), Runge–Kutta–Nystrom 12(10) (RKN12), Adams–Bashforth–
Moulton (ABM), and Gauss–Jackson (GJ). Both DP8 and RKN12 are high-order explicit
Runge–Kutta methods that use variable-step-size error control (Iserles 2004; Butcher 2008;
Hairer et al. 2009). However, RKN12 is an integration method that cannot handle velocity-

123

Orbit and uncertainty propagation

dependent forces, and so we will not consider it further. ABM and GJ are predictor-corrector
methods that utilize an explicit method for the prediction and an implicit method for the cor-
rection. Fixed-step implementations of GJ are widely used in numerical integration problems
for astrodynamics and dynamical astronomy. For example, an eighth-order GJ algorithm has
been used for space surveillance since the 1960s (Berry and Healy 2004). It is worth noting
that although GJ will reduce its step size (typically by factors of two) to ensure convergence
of a given time step, this does not qualify GJ as a variable-step integration method. Variable-
step methods quantify the difference between the numerical solution to the IVP and the true
solution to the IVP. Estimation of this numerical truncation error occurs after each time step
of the method, and it is used to decide whether to accept or reject the step, and how to change
the subsequent step size.1 Of the aforementioned state-of-the-art numerical integrators, we
select Dormand–Prince 8(7) for the basis of comparison because it is a high-order variable-
step method and because we possess a professional C++ implementation of it, courtesy of
Brankin et al. (1991).

Our work on variable-step implicit Runge–Kutta (IRK) methods has been motivated by the
work of Beylkin and Sandberg (2012), Bradley et al. (2012), and Bai and Junkins (2011), who
studied the use of fixed-step IRK methods for orbit propagation.2 Gauss–Legendre IRK (GL-
IRK) and Gauss–Chebyshev IRK methods are of particular interest because, unlike the above
explicit methods, they are parallelizable, thus amenable to high-performance computing, and
A-stable at all orders, thus allowing for larger (and fewer) time steps to be taken without
sacrificing stability (Iserles 2004; Butcher 2008; Hairer and Wanner 2010). The caveat is
that a nonlinear system of equations must be solved via iterative methods at each time step.
While this is a clear disadvantage for implicit methods in general, for the perturbed two-body
problem, one may use approximate analytical solutions to warm-start the iterations, leading
to very fast convergence. By tuning the number of time steps, the number of stages (nodes)
per time step, and the convergence criteria (iteration tolerance for a given time step), these
authors demonstrated that IRK methods can be made both precise and efficient, at least for
nearly-circular orbits, based on the number of force-model evaluations required to propagate
the orbit.3 In Junkins’ study (Bai and Junkins 2011), zonal harmonics in the Earth’s gravity
up to degree five were considered; more realistic gravitational force models were considered
by Beylkin and Sandberg (2012) and Bradley et al. (2012), specifically, zonal, tesseral, and
sectorial harmonics up to degree and order 70.

Variable-step orbital propagators, on the other hand, can be considered self-tuning. The
user selects an acceptable level of numerical truncation error (per step) in the state of the
object, and the method then estimates and controls the error by adjusting the step size so
that the error is close to but does not exceed the specified error tolerance. As a result, the
work devoted to each step and the accuracy achieved in the step are balanced for overall effi-
ciency (Butcher 2008; Shampine 1994, 2005). For this reason, modern numerical integration
methods use variable-step error estimation and control (Shampine 2005), and reject steps
that are too large for a given accuracy requirement. Note that fixed-step propagators do not
reject steps because there is no accuracy requirement.

1 Variable-step methods typically change the step size for each time step.
2 Chebyshev–Picard iteration (Bai and Junkins 2011), is an alternative, but mathematically equivalent (in the
sense that it produces the same discrete approximation) approach to Gauss–Chebyshev–Lobatto IRK using
fixed-point (Picard) iteration (Aristoff and Poore 2012; Wright 1970; Hulme 1972).
3 In the perturbed two-body problem, evaluation of the force models (the Earth gravity model in particular)
is the dominant cost of orbit propagation. The number of force-model evaluations can thus be used as a crude
measure of propagator performance.

123

J. M. Aristoff et al.

For an object in highly-elliptic orbit, a variable-step propagator will take smaller steps near
perigee and larger steps near apogee, thereby solving the IVP in an efficient manner. Con-
versely, fixed-step propagators such as Gauss–Jackson (Berry and Healy 2004) and MCPI,
as reported in the literature (Bai and Junkins 2011), take larger steps near perigee and smaller
steps near apogee. As a result, fixed-step propagators are forced to take extremely small
time steps throughout the entire propagation in order to achieve the same accuracy as that
of a variable-step method of the same order. Alternatively, the equations of motion can be
transformed [e.g., using the Sundman or generalized Sundman transform (Berry and Healy
2002)] so that fixed steps can be taken in an orbital anomaly (e.g., eccentric anomaly or true
anomaly), rather than in time, in an effort to distribute the numerical truncation error evenly
across the steps. Unfortunately, this approach results in the need to numerically integrate an
additional ordinary differential equation and it only approximately balances the work along
the orbit, in part because the Sundman transform is based on unperturbed Keplerian dynamics
(i.e., perturbations to the two-body problem are not accounted for in the transform).4

For nearly-circular orbits, one could argue that a fixed-step propagator is sufficient. How-
ever, this statement is defensible only if extensive simulation studies have been performed in
order to determine the relationship between the step size and the resulting numerical trunca-
tion error for a given force model, initial orbital state, and initial time, so that one need not
haphazardly select the step size. While it is possible to develop heuristics for this purpose, by
taking fixed steps, one can only approximately balance the work per step and the associated
accuracy because the forces acting on an object in near Earth orbit are not uniform along
the orbit. What is more, heuristics developed for one set of force models would be different
from those needed for a different set of force models, thereby limiting the applicability of
such fixed-step approaches.

The key to making a variable-step propagator is developing an efficient and accurate
method for error estimation. For explicit Runge–Kutta-based propagators, such as DP8, this
is straightforward. Error estimates can be cheaply embedded into the method (Hairer et al.
2009; Shampine 1994, 2005). For implicit Runge–Kutta-based propagators, this approach is
unsatisfactory (Hairer and Wanner 2010). Instead, we developed an error estimator which
makes use of the propagated solution in order to select the optimal time step for a given
tolerance, thereby controlling the accumulation of local error (i.e., error per step), and mini-
mizing the cost of error estimation and propagation per time step (Aristoff and Poore 2012;
Aristoff et al. 2014). This feature, among others, distinguishes our work from that of Bai
and Junkins (2011), Beylkin and Sandberg (2012) and Bradley et al. (2012), who studied
the use of fixed-step IRK methods for orbit propagation. An alternative implementation of
variable-step GL-IRK, coined VGL-s was developed by Jones (2012) using an approach for
error estimation suggested by Houwen and Sommeijer (1990). VGL-s was shown to have
comparable performance (in a serial computing environment) to DP8 in a geostationary Earth
orbit (GEO) scenario, better performance in a low Earth orbit (LEO) scenario, and worse
performance in a highly-elliptic (Molniya) orbit scenario. We recently showed that VGL-IRK
(in a serial computing environment) outperforms DP8 in all three of these orbital regimes,
measured by the number of force-model evaluations (Aristoff and Poore 2012). We will make
a direct comparison between VGL-s, DP8, MCPI, and VGL-IRK in Sect. 4, using runtime
measurements whenever possible.

As previously mentioned, precise uncertainty propagation, in addition to precise orbit
propagation, is needed to support numerous methods for advanced SSA. A large class of
methods for propagating the uncertainty in an object’s state (i.e., its probability density

4 The generalized Sundman transform can account for some perturbations to the two-body problem.

123

Orbit and uncertainty propagation

function) requires finding high-order numerical solutions to ensembles of IVPs. Uncertainty
propagation via the unscented Kalman filter (UKF) (Julier and Uhlmann 2004), for example,
requires 2n +1 trajectory (orbit) propagations, where n is the dimension of the state.5 Unlike
alternative approaches for uncertainty propagation, VGL-IRK exploits the proximity of the
particles or states and enables them to be propagated collectively, rather than individually.
Specifically, once the first state in the ensemble is propagated, the remaining states can be
propagated at a fraction of the cost by reusing the (near) optimal step sizes taken during
propagation of the first state, and by using the solution to the first IVP itself to warm-start the
iterations for the Runge–Kutta equations arising when solving the remaining IVPs. For the
perturbed two-body problem of orbital mechanics, this approach was found to significantly
reduce the computational cost of uncertainty propagation, measured by the number of force-
model evaluations for a given accuracy (Aristoff et al. 2012, 2014).

3 Methods

A brief description of the use of Runge–Kutta methods for orbit and uncertainty propagation
will now be given, followed by an overview of VGL-IRK. Additional details can be found
in Aristoff and Poore (2012) and Aristoff et al. (2014).

The equations of motion describing an object in space take the following form:

Y′′(t) = g
(
t, Y(t), Y′(t)

)
, Y(t0) = Y0, Y′(t0) = Y′

0. (1)

The independent variable t (time) is permitted to take on any real value, the dependent variable
Y (the state of the object) is a vector-valued function, and the prime symbol denotes the time
derivative. If the IVP (1) contains parameters whose values are unknown, these parameters
can be estimated via state augmentation, resulting in an additional evolution equation for
each parameter.

Runge–Kutta methods may be used to solve the IVP given by (1), that is, to find the
state of the object at a later (or earlier) time (Iserles 2004; Butcher 2008; Hairer et al. 2009;
Hairer and Wanner 2010). An s-stage Runge–Kutta method is defined by its weights b =
(b1, b2, . . . , bs), nodes c = (c1, c2, . . . , cs) and s by s integration matrix A whose elements
are ai j . It can be used to solve the IVP over a given time step t0 to t0 + h by writing

ξ i = Y′
0 + h

s∑

j=1

ai j ξ
′
j

ξ ′
i = g

⎛

⎝t0 + ci h, Y0 + h
s∑

j=1

ai j ξ j , Y′
0 + h

s∑

j=1

ai j ξ
′
j

⎞

⎠
i = 1, 2, . . . , s, (2)

where (ξ i , ξ
′
i) are the internal stages, that encode the state of the object at the intermediate

times t0 + ci h for i = 1, 2, . . . , s. Once obtained, the internal stages can be used to advance
the solution from t0 to t0 + h according to

Y1 = Y0 + h
s∑

i=1

bi ξ i , Y′
1 = Y′

0 + h
s∑

i=1

bi ξ
′
i . (3)

If ai j = 0 for i < j , then (2) is an explicit expression for the internal stages. Otherwise, as
with implicit Runge–Kutta methods, iterative techniques must be used to solve (2), as dis-

5 The 2n + 1 states arising within the UKF are often referred to as sigma points.

123

J. M. Aristoff et al.

cussed in Sect. 2, and unperturbed Keplerian dynamics or higher-fidelity analytical approx-
imations can be used as a guess to warm-start the iterations. We note that a more efficient
implementation of (2)–(3) can be made by substituting the first formula of (2) into the second
to yield

ξ ′
i = g

⎛

⎝t0 + ci h, Y0 + c̄i hY′
0 + h2

s∑

j=1

āi j ξ
′
j , Y′

0 + h
s∑

j=1

ai j ξ
′
j

⎞

⎠ , (4)

and by substituting the first formula of (2) into (3) to yield

Y1 = Y0 + hY′
0 + h2

s∑

i=1

b̄i ξ
′
i , and Y′

1 = Y′
0 + h

s∑

i=1

bi ξ
′
i . (5)

where

āi j =
s∑

k=1

aikak j , b̄i =
s∑

j=1

b j a ji , and c̄i =
s∑

j=1

ai j . (6)

This second-order formulation of Runge–Kutta is analogous to the second-order formulation
of MCPI presented by Bai and Junkins (2011). It is also known as double integration because
the position is given directly from the acceleration.

An s-stage Gauss–Legendre IRK method can be constructed by (1) letting c1, c2, . . . , cs

be the s zeros of the s-order Legendre polynomial and (2) computing

ai j =
ci∫

−1

L j (τ)dτ, i, j = 1, 2, . . . , s, (7)

and

bi =
1∫

−1

Li (τ)dτ, i = 1, 2, . . . , s, (8)

where

Li (τ) =
s∏

�=1, � �=i

τ − c�

ci − c�

(9)

is the Lagrange interpolating polynomial. An s-stage Gauss–Legendre implicit Runge–Kutta
method has order 2s, which is the highest order any s-stage Runge–Kutta method can
achieve (Butcher 2008; Hairer et al. 2009). Hence, the difference between the approximate
numerical solution (Ỹ, Ỹ′) and the exact solution (Y, Y′) is given by

||Ỹ − Y|| = O(h2s+2) and ||Ỹ′ − Y′|| = O(h2s+1) (10)

as h → 0. This asymptotic result can be used to estimate the numerical truncation error and
to adjust the step size after an accepted (or rejected) time step, so that the next time step taken
is near optimal.

Implementation of a variable-step Gauss–Legendre implicit Runge–Kutta (VGL-IRK)
method requires a number of careful considerations, details of which are presented in Aristoff
and Poore (2012) and in a companion paper Aristoff et al. (2014). A high-level overview of
VGL-IRK is given in Figs. 1 and 2, which describe propagation of the first state and of the
remaining states, respectively.

123

Orbit and uncertainty propagation

Fig. 1 High-level overview of
VGL-IRK: propagation of the
first (or only) state

Fig. 2 High-level overview of
VGL-IRK: propagation of the
remaining states

4 Results

In what follows, a rigorous comparison is made between VGL-IRK and DP8 for precise
orbit and uncertainty propagation. Specifically, we compare the efficiency (runtime versus
accuracy) of our C++ implementation of VGL-IRK to that of a professional C++ imple-
mentation of DP8 (Brankin et al. 1991). Multiple orbital regimes are considered, as are
high-fidelity gravitational models. A direct comparison of efficiency is now possible because
(1) each method uses the same set of force models, (2) each method is written in a com-
piled language, (3) each method is timed on the same computer, and (4) each method
uses the same compiler and compilation flags. We note that DP8 is more efficient than

123

J. M. Aristoff et al.

Table 2 Initial (Keplerian) orbital elements for the orbit propagation scenarios A, B, and C [taken from Jones
(2012)]

Scenario Orbit type a (km) e i(◦) Ω(◦) ω(◦) M(◦) Orbits

A LEO 6745.592 0.01 7.81 100.21 152.83 0.0 3

B GEO 42164.0 0.001 1.0 145.92 266.13 0.0 3

C Molniya 26553.0 0.74 63.4 330.21 270.0 0.0 3

lower-order Dormand–Prince methods [e.g., Dormand–Prince 5(4)] when used for precise
orbit and uncertainty propagation.

We will also consider the performance of VGL-s and MCPI for orbit and uncertainty
propagation. However, methods without variable-step error control (e.g., MCPI) cannot be
compared fairly to methods with variable-step error control (e.g., VGL-IRK, VGL-s, DP8),
since the former require a-priori unknown knowledge of the step size needed to achieve the
desired tolerance. This is a significant disadvantage from an operational standpoint that would
not appear in performance tests. Nevertheless, we have implemented a fixed-step version
of MCPI, and measured the number of function evaluations needed to obtain a prescribed
accuracy (after first tuning the algorithm to achieve optimal performance for said accuracy)
when used in conjunction with high-fidelity force models and realistic integration tolerances.

4.1 Comparison to results published in the literature

We begin by evaluating the performance of the propagators given in Table 1 using the sce-
narios listed in Table 2. Specifically, we measure the number of force-model evaluations
necessary to achieve centimeter accuracy after three orbital periods for an object in LEO, an
object in GEO, and an object in highly-elliptic (Molniya) orbit. A degree and order 70 Earth
gravity model (EGM2008), together with analytically-derived solar and lunar gravitational
perturbations (Montenbruck and Gill 2000), is used to model the forces. These particular
scenarios were chosen so that direct comparison can be made to the variable-step implemen-
tation of Gauss–Legendre implicit Runge–Kutta developed by Jones (2012), coined VGL-s.
A direct comparison to the fixed-step implementation of MCPI developed by Bai and Junkins
(2011) is not possible because the authors did not present the number of force-model eval-
uations nor did they use high-fidelity gravity models. It was therefore necessary to develop
an MCPI-based propagator in-house following Bai and Junkins (2011). Upon completion,
the algorithm was validated (using the aforementioned force model) against an independent
implementation of MCPI by Koblick (2012).6 For each of the scenarios in Table 2, we varied
the step size and number of nodes within MCPI in order to determine the optimal com-
bination of these tuning parameters. This was necessary because MCPI as reported in the
literature is a fixed-step method and unlike DP8, VGL-IRK, and VGL-s it does not adaptively
adjust the step size to meet a local accuracy requirement. We note that the solution to the
unperturbed two-body problem is used to warm-start the iterations arising in VGL-s, MCPI,
and VGL-IRK. This enhancement was not included in the original implementation of MCPI,
but we have included it here because doing so reduces the number of iterations required for
convergence. Truth is generated using a high-accuracy (fourteen digits of accuracy per time
step), high-order VGL-IRK method.

6 We observe a reduction in the number of force-model evaluations in our second-order implementation of
MCPI (analogous to the second-order implementation of IRK discussed in Sect. 3) compared to B. Koblick’s
first-order implementation of MCPI.

123

Orbit and uncertainty propagation

LEO GEO Molniya
0

0.5

1

1.5

2

2.5

3
x 10

4

fo

rc
e−

m
od

el
 e

va
lu

at
io

ns
Orbit Propagation

MCPI
DP8
VGL−s
VGL−IRK

LEO GEO Molniya
0

0.5

1

1.5

2

2.5

3

3.5

x 10
5

fo

rc
e

−
m

od
el

 e
va

lu
at

io
ns

Uncertainty Propagation

MCPI
DP8
VGL−s
VGL−IRK

Fig. 3 Computational cost of orbit and uncertainty propagation for the scenarios given in Table 2 using the
propagators listed in Table 1. (Left) Work required to propagate a single orbital state to within one centimeter
from truth for an object in LEO, GEO, and highly-elliptic (Molniya) orbit. (Right) Work required to propagate
thirteen orbital states (arising within the prediction step of the UKF) to within an average of one centimeter
from truth. A serial computing environment is assumed. In a parallel computing environment, the number
of force-model evaluations per processor/core could be substantially reduced when using MCPI, VGL-s, and
VGL-IRK, but not when using DP8

The work required to propagate a single position-velocity orbital state is shown in
Fig. 3(left). A serial computing environment is assumed. A number of comments can be
made. First, as expected, the work required to propagate an object in highly-elliptic (Mol-
niya) orbit exceeds the work required to propagate an object in LEO, which in turn exceeds
the work required to propagate on object in GEO. Second, despite using an optimal combina-
tion of tuning parameters, MCPI is less efficient than the other methods. This is particularly
evident for the Moniya object in highly-elliptic orbit, in which the variable-step methods are
5 to 17 times faster than MCPI for the same accuracy. Although the performance of MCPI
(as well as VGL-IRK and VGL-s) could be further enhanced by distributing the force-model
evaluations among parallel processors, there are inherent limitations to this approach (see
Sect. 5). Third, we observe that in all three scenarios, VGL-IRK requires fewer force-model
evaluations than each of the other methods, even for the highly-elliptic orbits. An alternative
implementation of Gauss–Legendre IRK, VGL-s, requires roughly three times the number of
force-model evaluations compared to that of VGL-IRK for the propagation of a single orbit.

Since the orbital state under consideration is six-dimensional, (orbit and) uncertainty
propagation via the UKF requires the propagation of 13 orbits (or sigma points). The work
required to propagate these sigma points to within an average of one centimeter accuracy is
shown in Fig. 3(right). For each scenario, the state covariance is representative of a high-
accuracy orbit belonging to an object in the space catalog (Aristoff et al. 2014). Because
VGL-IRK is able to exploit the proximity of nearby orbits (Aristoff et al. 2012, 2014), an
additional reduction in computational cost is achieved relative to the other methods. In other
words, uncertainty propagation does not cost 13 times that of a single orbit propagation (as

123

J. M. Aristoff et al.

Table 3 Initial (Keplerian) orbital elements for the uncertainty propagation scenarios, some of which are
taken from Vinti (1998), others from CelesTrak (Kelso 2013)

Scenario Orbit type a (km) e i(◦) Ω(◦) ω(◦) M(◦) Orbits

1S LEO 6640 0.0095 72.9 116 57.7 105 3

1L LEO 6640 0.0095 72.9 116 57.7 105 30

2S LEO 7878 0 30.0 137 0 36.0 3

2L LEO 7878 0 30.0 137 0 36.0 30

3S MEO 25508 0.0023 65.9 358 343 107 3

3L MEO 25508 0.0023 65.9 358 343 107 30

4S GEO 42164 0 0 0 0 250 3

4L GEO 42164 0 0 0 0 250 30

5S GEO 42164 0.0005 14 18 333 26.5 3

5L GEO 42164 0.0005 14 18 333 26.5 30

6S Molniya 26628 0.7416 63.4 120 261 144 3

6L Molniya 26628 0.7416 63.4 120 261 144 30

Both short and long propagations are considered, as are nearly-circular and highly-elliptic orbits

it does for MCPI, DP8, and VGL-s). This is particularly evident for the Molniya object in
highly-elliptic orbit, in which uncertainty propagation via VGL-IRK can be achieved at a
fraction of the cost. Specifically, VGL-IRK is roughly 45 times faster than MCPI, 8 times
faster than VGL-s, and 6 times faster than DP8 when propagating the uncertainty of a Molniya
object in highly-elliptic orbit.

4.2 Performance of DP8 and VGL-IRK: runtime analysis

Next, we present a series of runtime comparisons between Dormand–Prince 8(7) and VGL-
IRK methods used for orbit and uncertainty propagation. Specifically, we construct work-
accuracy plots for VGL-IRK and DP8. We also consider the performance of VGL-IRK
wherein the orbital states are propagated individually, rather than collectively, in order to
show the benefit of collective propagation. The tests are run on a 2.6 GHz single threaded
process on Ubuntu 12.04 (64-bit). The algorithms (as well as the force models) are written in
C++ and compiled using GCC version 4.6.3 with the –O2 optimization flag. Neither MCPI
nor VGL-s are included in this suite of tests because we do not have a C++ implementation
of the version of these methods reported in the literature.

Twelve realistic uncertainty propagation scenarios are used to quantify the performance of
VGL-IRK and DP8 (see Table 3). These include scenarios with objects in low-altitude LEO,
high-altitude LEO, medium Earth orbit (MEO), non-inclined geostationary orbit (GEO),
inclined GEO, and highly-elliptic orbit. Both short (3 orbital periods) and long (30 orbital
periods) propagations are considered. All propagations use the J2000 epoch. We present the
cost of uncertainty propagation via the UKF in which 13 sigma points (or states) are used to
represent uncertainty (of a six-dimensional Gaussian state). The mean sigma point is given
in Table 3. The other twelve sigma points are perturbed from the mean, and characterize the
uncertainty in the orbital state (the state covariance is representative of a high-accuracy orbit
belonging to an object in the space catalog). The following truncation levels for EGM2008
are used: 90 for LEO, 20 for MEO, and 12 for GEO (Petit and Luzum 2010). A degree and
order 90 gravity model is used for the Molniya object. Analytically-derived solar and lunar
perturbations are also included in the force model (Montenbruck and Gill 2000). Truth is

123

Orbit and uncertainty propagation

generated using a high-accuracy (fourteen digits of accuracy per time step), high-order VGL-
IRK method. Note that both DP8 and VGL-IRK are variable-step propagators that estimate
and control the integration error based on a user-provided error tolerance.

We present in Figs. 4 and 5 the relationship between the global root-mean-square integra-
tion error in position, averaged over the 13 states, and the computational cost (runtime) in a
serial computing environment, for each of the twelve scenarios. The runtime is an average
over 10 trials. The local integration tolerance is varied so that the global integration error is
between 1 mm and 10 m for the short propagations, and between 1 cm and 100 m for the long
propagations. An additional speedup would be observed for VGL-IRK in a parallel computing
environment (see Sect. 5). The results are summarized in Table 4. Overall, VGL-IRK takes
70–91 % less time than DP8 when propagating orbits collectively (70–89 % for nearly-circular
orbits, 74–91 % for highly-elliptic orbits). Collective propagation of the sigma points is par-
ticularly advantageous when propagating highly-elliptic orbits, as evidenced by Fig. 5e, f.

5 Discussion

The above results were obtained in a serial computing environment. In a parallel computing
environment, evaluation of the force model (which tends to be expensive) could be done
independently and in parallel with VGL-IRK, VGL-s, or MCPI. Over a given time step, the
number of force-model evaluations is proportional to the number of nodes (or stages) in the
method. It is therefore tempting to dedicate available processors to the task of evaluating the
force model and to use high-order methods with a large number of nodes. However, there
are two issues with this approach. First, as the number of nodes is increased, the order of
the method increases, and larger time steps can and must to be taken in order to maintain
efficiency (since more work is done per step). However, time steps which are too large (e.g.,
on the order of an orbital period or more) will lead to inefficient or imprecise integration [and
possibly numerical instability (Aristoff et al. 2014)], because the work devoted to each step
and the accuracy achieved in the step becomes unbalanced. Large steps are also discouraged
because when a step is rejected, the amount of work that is wasted is proportional to the step
size. Larger steps also mean fewer chances for the step size to be adjusted. Hence, if the
initial time step is too small and the duration of the propagation is short, then the propagated
state may be much more accurate than what the user requested, and therefore too much work
was devoted to the propagation. The second issue is that rarely does one need to propagate
only a single orbit (trajectory). When multiple orbits need to be propagated (e.g., for uncer-
tainty propagation), each orbit propagation could be done in parallel before the force-model
evaluations themselves are parallelized. Moreover, when multiple uncertainties need to be
propagated (e.g., for scoring different association hypotheses within a tracking system), each
uncertainty propagation could be done in parallel before the orbit propagations themselves
are parallelized. Parallelization of higher-level functions should precede parallelization of
the lower-level force-model evaluations, in part because the level of communication between
parallel force-model evaluations would be non-negligible and lead to slower propagations.

As previously mentioned, Chebyshev–Picard iteration is mathematically equivalent to
Gauss–Chebyshev (Lobatto) IRK wherein fixed-point (Picard) iteration is used to solve the
nonlinear system of equations that arise on each time step. One could therefore incor-
porate variable-step error estimation and control within an implementation of MCPI in
order to significantly improve its performance and make the method self-tuning. However,
Gauss–Legendre IRK remains the preferred IRK approach because the scheme is both super-
convergent and symplectic (Gauss–Chebyshev–Lobatto schemes are neither superconvergent

123

J. M. Aristoff et al.

10−410−310−210−1100101
0

0.5

1

1.5

2

2.5

Global integration error (meters)

R
un

tim
e

(s
ec

on
ds

)
DP8
VGL−IRK (ind.)
VGL−IRK (coll.)

10−310−210−1100101102
0

5

10

15

20

25

Global integration error (meters)

R
un

tim
e

(s
ec

on
ds

)

DP8
VGL−IRK (ind.)
VGL−IRK (coll.)

0

0.05

0.1

0.15

0.2

0.25

Global integration error (meters)

R
un

tim
e

(s
ec

on
ds

)

DP8
VGL−IRK (ind.)
VGL−IRK (coll.)

0

0.5

1

1.5

2

2.5

3

Global integration error (meters)

R
un

tim
e

(s
ec

on
ds

)

DP8
VGL−IRK (ind.)
VGL−IRK (coll.)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Global integration error (meters)

R
un

tim
e

(s
ec

on
ds

)

DP8
VGL−IRK (ind.)
VGL−IRK (coll.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Global integration error (meters)

R
un

tim
e

(s
ec

on
ds

)

DP8
VGL−IRK (ind.)
VGL−IRK (coll.)

(a) (b)

(c) (d)

(e) (f)

10−410−310−210−1100101 10−310−210−1100101102

10−410−310−210−1100101 10−310−210−1100101102

Fig. 4 Work-accuracy plots for Scenarios 1–3 (see Table 3) using a variable-step Gauss–Legendre-implicit-
Runge–Kutta-based uncertainty propagator (VGL-IRK) and a variable-step Dormand–Prince 8(7)-based
uncertainty propagator (DP8). The result for both collective and individual propagation of the orbits within
VGL-IRK is shown. Note that DP8 is an explicit method and must therefore propagate orbits individually. A
serial computing environment is assumed. An additional speed-up would be observed for VGL-IRK in a paral-
lel computing environment. a Scenario 1S: LEO (low-altitude). b Scenario 1L: LEO (low-altitude). c Scenario
2S: LEO (high-altitude). d Scenario 2L: LEO (high-altitude). e Scenario 3S: MEO. f Scenario 3L: MEO

nor symplectic). Superconvergent methods achieve the highest possible convergence rate (i.e.,
an s-stage method achieves order 2s). Symplectic methods are better suited for long-time
propagations (because the Hamiltonian will be conserved) as well as propagations involving

123

Orbit and uncertainty propagation

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Global integration error (meters)

R
un

tim
e

(s
ec

on
ds

)
DP8
VGL−IRK (ind.)
VGL−IRK (coll.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Global integration error (meters)

R
un

tim
e

(s
ec

on
ds

)

DP8

VGL−IRK (coll.)
VGL−IRK (ind.)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Global integration error (meters)

R
un

tim
e

(s
ec

on
ds

)

DP8

VGL−IRK (coll.)
VGL−IRK (ind.)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Global integration error (meters)

R
un

tim
e

(s
ec

on
ds

)

DP8
VGL−IRK (ind.)
VGL−IRK (coll.)

10−310−210−1100101102
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Global integration error (meters)

R
un

tim
e

(s
ec

on
ds

)

DP8
VGL−IRK (ind.)
VGL−IRK (coll.)

10−210−1100101102103
0

2

4

6

8

10

12

14

16

18

Global integration error (meters)

R
un

tim
e

(s
ec

on
ds

)

DP8

VGL−IRK (coll.)
VGL−IRK (ind.)

10−410−310−210−1100101 10−310−210−1100101102

10−410−310−210−1100101 10−310−210−1100101102

(a) (b)

(d)(c)

(e) (f)

Fig. 5 Work-accuracy plots for Scenarios 4–6 in (see Table 3) using a variable-step Gauss–Legendre-
implicit-Runge–Kutta-based uncertainty propagator (VGL-IRK) and a variable-step Dormand–Prince 8(7)-
based uncertainty propagator (DP8). The result for both collective and individual propagation of the orbits
within VGL-IRK is shown. Note that DP8 is an explicit method and must therefore propagate orbits individu-
ally. A serial computing environment is assumed. An additional speed-up would be observed for VGL-IRK in
a parallel computing environment. a Scenario 4S: GEO (non-inclined). b Scenario 4L: GEO (non-inclined). c
Scenario 5S: GEO (inclined). d Scenario 5L: GEO (inclined). e Scenario 6S: Molniya. f Scenario 6L: Molniya

the state of an object and its attitude (because the quaternion normalization constraint will
be automatically satisfied). Although the underlying IRK scheme is symplectic, the present
implementation of VGL-IRK is designed for short- to medium-time propagations. Some

123

J. M. Aristoff et al.

Table 4 Summary of computational savings [relative to Dormand–Prince 8(7)] for the propagation of uncer-
tainty in Scenarios 1–6 (see Table 3, Figs. 4 and 5) using VGL-IRK in a serial computing environment

Scenario 1S
(LEO)

Scenario 1L
(LEO)

Scenario 2S
(LEO)

Scenario 2L
(LEO)

Scenario 3S
(MEO)

Scenario 3L
(MEO)

Savings (%) 72–80 72–80 70–77 79–81 86–87 90–91

Scenario 4S
(GEO)

Scenario 4L
(GEO)

Scenario 5S
(GEO)

Scenario 5L
(GEO)

Scenario 6S
(Molniya)

Scenario 6L
(Molniya)

Savings (%) 85–86 82–89 82–87 84–86 74–81 81–82

The computational savings tend to increase as the accuracy of the propagation increases. Further computational
savings would be achieved in a parallel computing environment

changes to the implementation would be necessary to ensure high accuracy for very-long-
time propagations, wherein round-off errors may dominate truncation errors (Hairer et al.
2007, 2010; Farrés et al. 2013). This is the subject of ongoing work.

6 Conclusions

A variable-step Gauss–Legendre IRK (VGL-IRK) method has been developed specifically
for orbit and uncertainty propagation. The VGL-IRK method has a number of desirable
numerical properties. It is A-stable, parallelizable, symmetric, symplectic, and superconver-
gent (see Table 1). The method is adaptive in that the user only needs to specify the requested
accuracy to be achieved. This feature removes the guess-work needed to select a step size and
leads to a more efficient propagation, especially when dealing with objects in highly-elliptic
orbits. Finally, the VGL-IRK method propagates nearby trajectories collectively, rather than
individually, which significantly reduces the computational cost of uncertainty propagation
without sacrificing accuracy.

The performance of Gauss–Legendre-, Dormand–Prince-, and Chebyshev–Picard-based
propagators was analyzed within a realistic simulation environment using high-fidelity grav-
ity models and a range of realistic integration (error) tolerances. Both nearly-circular and
highly-elliptic orbits were considered, as was both orbit and uncertainty propagation. We
demonstrated that the variable-step implementation of Gauss–Legendre IRK (VGL-IRK)
described above and outlined in Sect. 3 is up to eleven times faster than a professional imple-
mentation of Dormand–Prince 8(7) (Brankin et al. 1991) for the same accuracy, even before
VGL-IRK is potentially parallelized, and three to eight times faster than an alternative imple-
mentation of Gauss–Legendre IRK, VGL-s (Jones 2012). Moreover, VGL-IRK was shown to
be 8 to 45 times more efficient than our implementation of MCPI (Bai and Junkins 2011), even
after MCPI had been optimally tuned for a prescribed accuracy. Because VGL-IRK is fully-
adaptive and substantially reduces the cost of uncertainty propagation in multiple regimes of
space (or equivalently, increases the accuracy of uncertainty propagation for the same cost),
the method promises to have a significant impact on SSA functions that rely on uncertainty
propagation such as tracking, uncorrelated track resolution, and conjunction analysis.

Acknowledgments The authors thank Alex Mont and David Beach for their assistance with the C++ software
implementation. This work was funded, in part, by a Phase II STTR from the Air Force Office of Scientific
Research (FA9550-12-C-0034) and a grant from the Air Force Office of Scientific Research (FA9550-11-1-
0248).

123

Orbit and uncertainty propagation

References

Aristoff, J.M., Poore, A.B.: Implicit Runge–Kutta methods for orbit propagation. In: Proceedings of the 2012
AIAA/AAS Astrodynamics Specialist Conference, AIAA 2012-4880, pp. 1–19. Minneapolis, MN (2012)

Aristoff, J.M., Horwood, J.T., Poore, A.B.: Implicit Runge–Kutta methods for uncertainty propagation. In:
Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, HI
(2012)

Aristoff, J.M., Horwood, J.T., Poore, A.B.: Implicit Runge–Kutta-based methods for fast, precise, and scalable
uncertainty propagation. Under Review (2014)

Bai, X., Junkins, J.L.: Modified Chebyshev–Picard iteration methods for orbit propagation. J. Astronaut. Sci.
3, 1–27 (2011)

Berry, M.M., Healy, L.M.: The generalized Sundman transformation for propagation of high-eccentricity
elliptical orbits. In: Proceedings of the 12th AAS/AIAA Space Flight Mechanics Meeting, San Antonio,
TX (2002). Paper AAS-02-109

Berry, M.M., Healy, L.M.: Implementation of Gauss–Jackson integration for orbit propagation. J. Astronaut.
Sci. 52(3), 331–357 (2004)

Beylkin, G., Sandberg, K.: ODE Solvers using bandlimited approximations. arXiv:1208.3285v1 [math.NA]
(2012)

Bradley, B.K., Jones, B.A., Beylkin, G., Axelrad, P.: A new numerical integration technique in astrodynamics.
In: Proceedings of the 22nd Annual AAS/AIAA Spaceflight Mechanics Meeting, pp. 1–20, Charleston, SC
(2012). AAS 12–216

Brankin, R.W., Gladwell, I., Shampine, L.F.: RKsuite Release 1.0. http://www.netlib.org/ode/rksuite/
rksuitec++.zip (1991)

Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, West Sussex (2008)
Farrés, A., Laskar, J., Blanes, S., Casas, F., Makazaga, J., Murua, A.: High precision symplectic integrators

for the solar system, Celest. Mech. Dyn. Astr. 116, 141–174 (2013)
Hairer, E., Wanner, G.: Solving ordinary differential equations II: stiff and differential-algebraic problems. In:

Springer Series in Computational Mathematics, 2nd edn. Springer (2010)
Hairer, E., McLachlan, R.I., Razakarivony, A.: Achieving Brouwer’s law with implicit Runge–Kutta methods.

BIT Numer. Math. 48, 231–243 (2007)
Hairer, E., Norsett, S.P., Wanner, G.: Solving ordinary differential equations I: nonstiff problems. In: Springer

Series in Computational Mathematics, 2nd edn. Springer (2009)
Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for

ordinary differential equations. In: Springer Series in Computational Mathematics. Springer (2010)
Hulme, B.L.: One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comput.

26(118), 415–426 (1972)
Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press,

Cambridge (2004)
Jones, B.A.: Orbit propagation using Gauss-Legendre collocation. In: Proceedings of the 2012 AIAA/AAS

Astrodynamics Specialist Conference, AIAA 2012-4967, pp. 1–16. Minneapolis, MN (2012)
Jones, B.A., Anderson, R.L.: A survey of symplectic and collocation integration methods for orbit propagation.

In: Proceedings of the 22nd Annual AAS/AIAA Spaceflight Mechanics Meeting, pp. 1–20, Charleston, SC
(2012). AAS 12-214.

Julier, S.J., Uhlmann, J.K.: Unscented filtering and nonlinear estimation. Proc. IEEE 92, 401–422 (2004)
Kelso, T.S.: Celestrak. http://www.celestrak.com (2013)
Koblick, D.: Vectorized Picard–Chebyshev Method. http://www.mathworks.com/matlabcentral/fileexchange/

36940 (2012)
Montenbruck, O.: Numerical integration methods for orbital motion. Celest. Mech. Dyn. Astr. 53, 59–69

(1992)
Montenbruck, O., Gill, E.: Satellite Orbits: Models, Methods, and Applications. Springer, Berlin (2000)
Nielsen, P.D., Alfriend, K.T., Bloomfield, M.J., Emmert, J.T., Miller, J.G., Guo, Y., et al.: Continuing Kepler’s

Quest: Assessing Air Force Space Command’s Astrodynamics Standards. National Academies Press, Wash-
ington, DC (2012)

Petit, G., Luzum, B.: IERS Conventions (2010). Technical Report, International Earth Rotation and Reference
Systems Service (2010)

Shampine, L.F.: Numerical Solution of Ordinary Differential Equations. Chapman and Hall, London (1994)
Shampine, L.F.: Error estimation and control for ODEs. J. Sci. Comput. 25, 3–16 (2005)
van der Houwen, P.J., Sommeijer, D.P.: Parallel iteration of high-order Runge–Kutta methods with stepsize

control. J. Comput. Appl. Math. 29(1), 111–127 (1990)

123

http://www.netlib.org/ode/rksuite/rksuitec++.zip
http://www.netlib.org/ode/rksuite/rksuitec++.zip
http://www.celestrak.com
http://www.mathworks.com/matlabcentral/fileexchange/36940
http://www.mathworks.com/matlabcentral/fileexchange/36940

J. M. Aristoff et al.

Vinti, J.P.: Orbital and celestial mechanics. In: Der, G.J., Bonavito, N.L. (eds.) Progress in Astronautics and
Aeronautics, vol. 177. American Institute of Aeronautics and Astronautics, Cambridge, MA (1998)

Wright, K.: Some relationships between implicit Runge–Kutta, collocation and Lanczos methods and their
stability properties. BIT 10, 217–227 (1970)

123

	Orbit and uncertainty propagation: a comparison of Gauss--Legendre-, Dormand--Prince-, and Chebyshev--Picard-based approaches
	Abstract
	1 Introduction
	2 Background
	3 Methods
	4 Results
	4.1 Comparison to results published in the literature
	4.2 Performance of DP8 and VGL-IRK: runtime analysis

	5 Discussion
	6 Conclusions
	Acknowledgments
	References

