














� ln PE � 1
2
��1 � �2�T�P1 � P2��1��1 � �2�

� 1
2
ln det�2��P1 � P2�� (34)

The first term in Eq. (34) involves the familiar Mahalanobis
distance. However, for non-Gaussian uncertainties which commonly
arise in space surveillance tracking due to the need to propagate over
long time spans, higher fidelity filters and representations of the
uncertainty must be used to account for possible higher-order
statistics (cumulants). In other words, the prediction error is filter
dependent and must be evaluated accordingly.

The association problem provides a natural application of the
prediction error PE in Eq. (33) as a metric for uncertainty
consistency. Referring to Fig. 5, suppose there are two satellite states
at times t1 and t2 (with t1 � t2 without loss of generality) represented
by the PDFs p1�x; t1� and p2�x; t2�, respectively, and one wishes to
assess whether the two objects associate. The likelihood score for
computing the probability of association depends on the prediction
error (33), which for this scenario is given by

PE �t� �
Z
p1�x; t�p2�x; t� dx (35)

It is also convenient to the define the “cost” metric from Eq. (35)
according to

c�t� � � ln PE�t� (36)

Evaluation of the integral Eq. (35) requires representations of both
PDFs p1 and p2 at some common time t. Thus, one could either
1) propagate p1 to time t2 and evaluate PE�t2�, or 2) propagate p1

from time t1 to some intermediate time t�, then back propagate p2 to
t�, and finally evaluate PE�t��. In fact, the value of the prediction
error is independent of the choice of t� under the assumption that the
dynamics are governed by a conservative deterministic model and
the PDFs are propagated consistently. This result is formally stated
and proved below.

Proposition 1. Let p1�x; t� and p2�x; t� denote the PDFs of two
independent states at time t. Suppose the state x is governed by the
conservative dynamical model

x 0�t� � f�x�t�; t�; rTx f � 0

and the time evolution of each PDF satisfies the noiseless Fokker–
Planck–Kolmogorov equation

@p

@t
��rTx �pf� (37)

where rx is the gradient with respect to x viewed as a column
operator. Then, the prediction error (35) is time-independent.

Proof: Ifp1 and p2 both satisfy Eq. (37), then the same can be said
for their product. Indeed, by the product rule

@

@t
�p1p2� � p1

@p2

@t
� p2

@p1

@t
��p1rTx �p2f� � p2rTx �p1f�

� �rTx �p1p2f�

Therefore

d

dt
PE � d

dt

Z
p1p2 dx�

Z
@

@t
�p1p2� dx

��
Z
rTx �p1p2f� dx� 0

as follows from the Gauss divergence theorem from elementary
vector calculus. □

The metric (35) provides a necessary condition for uncertainty
consistency. If the evolution of the prediction error is not constant
over time, then the propagated uncertainties of the two states are not
consistent. The use of this metric for quantifying uncertainty
consistency over long time gaps is illustrated in the next section.

In closing, the proof of proposition 1 can be replicated for other
“distance metrics” such as the Kullback–Leibler divergence (KLD),

KL �t� �
Z
p1�x; t� ln

�
p1�x; t�
p2�x; t�

�
dx

The KLD can thus serve as an alternative metric for uncertainty
consistency. While the KLD is used in sensor resource management
as a measure of mutual information gain [20], it is not what is
commonly used in tracking for scoring likelihoods of association. A
rigorous derivation of the likelihood ratio used to score the
association of a track or measurement to an orbit is provided, for
example, in Poore [19]; it is precisely the prediction errorp�zkjZk�1�
or Eq. (32)which appears in the ensuing expression and not theKLD.

Simulation Studies

In this section, results demonstrating the proposed GSF are
presented. For a low-Earth-orbit (LEO) scenario, it isfirst shown how
the standard UKF does not necessarily maintain uncertainty consis-
tency during long-term propagation and how higher fidelity GSFs
can improve this situation. Next, the impact of correct uncer-
tainty management on the problems of association and anomaly
detection is illustrated. Finally, a weight adaptation scheme for
uncertainty propagation (full details of which are explained in the
appendix) is applied to the GSF and is shown not to provide any
additional accuracy of the forecast PDF.

The simulation scenario considers a canonical test problem
involving two closely spaced objects (CSOs) in LEO whose initial
uncertainties are Gaussian with respect to equinoctial orbital
elements. The initial states of the objects at time t� 0 are:

a1 � 6980 km; h1 � k1 � p1 � q1 � ‘1 � 0 �Object 1�
a2 � 7020 km; h2 � k2 � p2 � q2 � ‘2 � 0 �Object 2�

p1(x, t1)

p2(x, t2)
p2(x, t2)

p1(x, t2)

p1(x, t*)

p2(x, t*)

Fig. 5 The evaluation of the prediction error (35) used to compute the probability of association between two states at times t1 and t2 (left) requires

representations of their PDFs at a common time t� [e.g., t� � t2 (middle) or t1 < t� < t2 (right)]. The prediction error is independent of the choice of t�.
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The initial covariances of the objects areP1 � P2 �AAT , where‡‡

A � diag

�
20 km; 10�3; 10�3; 10�3; 10�3; 10�2 �

180

�

From Eq. (35), it follows that the prediction error between the two
objects at t� 0 is§§ PE � 3:387367558 � 1014 with corresponding
cost

� ln PE ��33:45624439 (38)

Fixing a particular filter, the initial Gaussians are propagated¶¶ for
a total time of 32.38 h (which is about 20 complete orbital periods)
and the prediction error (35) and the cost (36) are evaluated at inter-
mediate times. By proposition 1, the cost must retain the constant
value given by Eq. (38) to assert that the state uncertainties are
propagated consistently (i.e., a constant cost is a necessary condition
for uncertainty consistency). Thus, any departure from a constant
cost signals a degradation in the computed uncertainty.

The left half of Fig. 6 plots the evolution of the cost metric using
the Gauss–Hermite filters (GHFs) of order three, five, and seven (the
former is the standard UKF). Indeed, there is negligible difference in
the computed costs. Therefore, the standard (third-order) UKF
achieves covariance consistency. It must be emphasized that the
GHFs compute themean and covariance (of a possibly non-Gaussian
PDF) directly from their respective definitions using Gauss–Hermite
quadrature. By increasing the order the quadrature method (i.e.,
increasing the number of sigmapoints), the accuracy of the computed
mean and covariance does not change. However, covariance con-
sistency is only a prerequisite to the more general uncertainty
consistency. Although the UKF correctly resolves the mean and
covariance (first two cumulants) of the true PDF, it fails to capture
information about the cumulants of third-order and higher. Because
the cost diverges from the initial value, the true state uncertainties of
the CSOs are evidently non-Gaussian and contain nonnegligible
higher-order cumulants which impact the probability of association
(POA). After 20 orbital periods, this divergence is nearly four units of
cost or about a factor of 50 in the prediction error. Consequently, the
resulting POA could have an error upwards of a full order of
magnitude.

The right half of Fig. 6 shows the improvement in uncertainty
consistency when using the GSF with various numbers of mixture
components. In generating these results, the initial Gaussian
uncertainties of the CSOs were refined into Gaussian sums using
Algorithm 1 and the component Gaussians propagated using the
(third-order) UKF. For comparison purposes, the top curve is once
again the cost obtained when the initial Gaussian uncertainties are
propagated using the UKF. The remaining curves show the cost
obtained using GSFs with 10, 38, 112, and 347 Gaussian compo-
nents. By accounting for higher-order cumulants in the uncertainties,
the GSF provides improved uncertainty consistency as seen by the
mitigation of the divergence in the time evolution of the cost
function. As the number of Gaussians increases, the uncertainty
consistency improves. The highest fidelity filter (N � 347) shows no
noticeable uncertainty degradation over the entire 20 orbital period
propagation.

While the GSF can give high-accuracy results, it can be expensive
as a potentially large number of Gaussians must be propagated.
However, in some situations (e.g., short propagation times or small
initial uncertainties in the semimajor axis a), such a fine level of
accuracymaynot be required. For example, Fig. 7 shows how the rate
of uncertainty degradation for the UKF depends on the magnitude of
the initial uncertainty (standard deviation) in the semimajor axis of
the two CSOs. The dark blue (top) curve corresponds to an initial
standard deviation in the semimajor axis of 20 km, which is the same
value used to generate the plots in Fig. 6. The remaining curves are
generated using a semimajor axis standard deviation of A11 � �a,
where �a varies as shown in the figure. The initial means of the
semimajor axes of the two CSOs are set∗∗∗ to a1 � 7000 km � �a
and a2 � 7000 km� �a. Because the initial states and uncertainties
differ, the prediction error or cost at time zero, as determined from
Eq. (35), also differs for each �a case. Of greater interest is how these
costs evolve in time. While the uncertainty consistency rapidly
degrades for larger �a, with a small uncertainty of �a � 1 km,
uncertainty consistency is maintained for approximately 20 orbits.
This result is consistent with Sabol et al. [17]. However, even for this
case of small initial uncertainty in the semimajor axis, uncertainty
consistency cannot be maintained indefinitely; within 50 orbital
periods the degradation is significant. This indicates that for some
situations (e.g., small �a, short propagation times) computationally
cheap low-fidelity methods can be used, while more accurate
methods like the Gaussian sum filter will be needed in other cases.

Figure 8 provides insight into the source of the periodic
oscillations in the prediction error (cost). Here evolution of the cost
metric is plotted using the UKF and various GSFs assuming
propagation under either a full (SP) gravity model (thin curves) or
unperturbed Keplerian dynamics (thick curves). The former set of
curves are those from Fig. 6. For the Keplerian case, uncertainty
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Fig. 6 Evolution of the cost metric (36) computed using the UKF, various GHFs, and various GSFs.

‡‡A value of 20 km for the uncertainty in the semimajor axis is
representative of real data the authors have processed describing a breakup
scenario in LEO. Later in this section, the rate of uncertainty degradation on
the initial uncertainty in the semimajor axis is studied (see Fig. 7).

§§The prediction error (or cost) depends on units. In this paper, the assumed
length unit is Earth radii (R�); 1R� � 6378:137 km.

¶¶Unless stated otherwise, the discrete-time square-root version of theUKF
[15] is used to propagate Gaussian PDFs and component Gaussians within a
Gaussian mixture. The UKF sigma points are propagated using the
Astrodynamic Standards Special Perturbations (SP) program (Version 7)
using a degree and order 70 gravity model.

∗∗∗This choice of initial conditions ensures that the objects always start
with a separation of 2�a, though qualitatively the results are not dependent on
this spacing.
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consistency still degrades over time, but the degradation is essentially
monotonic with a smoothly varying rate. The oscillations that appear
when using the full gravitymodel are not present and it is conjectured
that these periodic oscillations are due to the effects of the
perturbations (and not a numerical stability issue). Thus, even under
Keplerian dynamics, the initial Gaussian uncertainties evolve to
something non-Gaussian (and are better described by considering
higher-order representations of the uncertainty such as Gaussian
sums).

Assuming use of the full gravity model for the remainder of this
section, Fig. 9 illustrates the impact of uncertainty consistency when
state uncertainties are represented in Cartesian ECI coordinates
versus equinoctial orbital elements and alternate equinoctial orbital
elements.†††Herewe can see that the costmetric degradesmuchmore
rapidly in Cartesian space; while there is an error of about 5.5 units of
cost over 50 orbital periods in equinoctial orbital elements, this same
error is surpassed in less than a single orbital period in ECI. It is also
important to note that both the ECI and orbital element implement-
ations of the UKF used here assume the square-root version of the
UKF [15]. This greatly improves numerical conditioning and
stability, allowing a Gaussian to be propagated over a long time
period in ECI (and orbital elements) without suffering from
“covariance collapse.” Thus, in defense of ECI, the standard UKF

still maintains covariance consistency (since there is little change
when using higher-order Gauss–Hermite filters).

Figures 9 and 10 also show the additional benefit of representing
and propagating uncertainties in the alternate set of equinoctial
orbital elements over the traditional set. For both the traditional and
alternate element sets, the use of Gaussian sums mitigates the
degradation in the evolved prediction error (cost) and hence im-
proves the consistency (accuracy) of the represented state uncer-
tainty. For long propagation times, the degradation in cost is slightly
less when using the alternate set over the traditional set. However,
around t� 0, the cost curves in the alternate set are significantly
flatter than those in the traditional set. Thus, for short propagation
times, the use of alternate equinoctial orbital elements provides a
more accurate representation of the state PDF compared with
representations in traditional equinoctial orbital elements.

Impact on Association and Anomaly Detection

The example in Fig. 11 demonstrates the impact of correct
uncertaintymanagement on the problems of association (correlation)
and anomaly (maneuver, change) detection. The left half of thefigure
depicts the non-Gaussianity of the uncertainty in Object 1 after only
four orbital periods (about 6.5 h). A two-dimensional slice of its PDF
along the semimajor axis a and mean longitude ‘ coordinates is
plotted. The true uncertainty (grayscale colormap) was computed
using a high-fidelity Gaussian sum filter with N � 1127 and is
contrasted with the Gaussian uncertainty (reddish colormap)
obtained from the UKF. Suppose one wishes to compute the
prediction error (or cost) associated with a new Gaussian track state
(blueish colormap) located between the tails of the true distribution.
In this particular example, a cost of �32:675 is obtained from the
UKF approximation versus a cost of �3:5595 from the N � 1127
GSF. Therefore, the UKF estimates a smaller cost leading to a higher
probability of association and possibly amisassociation and possibly
a failure to detect an anomaly. Note that even a medium fidelity GSF
(e.g., 112 or 347 terms) can estimate the true uncertainty and hence
the cost much more accurately than the UKF, and this in turn
mitigates misassociations and undetected anomalies.

Effect of Weight Update Scheme

Figure 12 shows the evolution of the costmetric (36) using various
GSFs and the impact of using a weight adaptation method for
uncertainty propagation. Unperturbed Keplerian dynamics are
assumed in this figure. The solid curves correspond to the GSFof this
paper, which does not use any weight update method by default
(these curves are the same as the thick curves in Fig. 8). The dashed
curves in Fig. 6 show the evolved cost when using a GSF in
conjunction with the weight update scheme described in the
appendix with the updates occurring at a frequency of every
one-tenth of an orbital period (i.e., 200 times over the length of the
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Fig. 7 Evolution of the costmetric (35) computed using theUKF comparing the effect of the size of the initial standard deviation �a in the semimajor axis

of the two closely spaced objects.
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Fig. 8 Evolution of the cost metric (35) computed using the UKF and

various GSFs where propagation is done assuming either a full gravity

model (thin curves) or unperturbed Keplerian dynamics (thick curves).

†††For this comparison, the initial uncertainty is assumed to be Gaussian in
all coordinate systems. For the ECI and alternate equinoctial cases, the initial
uncertainty was computed by performing an unscented transform on the
initial Gaussian (in equinoctial elements) defined at the beginning of this
section.
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Fig. 10 Evolution of the cost metric (35) computed using the UKF and various GSFs where the uncertainty is represented in (traditional) EqOE versus
AEqOE.

Fig. 11 (Left) ThePDFofObject 1 in the semimajor axis a andmean longitude ‘ coordinates after four orbital periods computedusing theUKF (reddish

colormap) and a GSF withN � 1127 (grayscale colormap). The blueish Gaussian represents a track update. The prediction error for the update against

various fidelity GSFs are shown in the table (right).
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scenario). Although the dashed curves (which use theweight update)
agree at early times with the solid curves (which do not use any
weight update), there is some divergence at later times, especially for
the low (N � 10) and medium (N � 38) fidelity Gaussian sums. In
all cases, the application of the weight adaptation scheme does not
improve uncertainty consistency.

Conclusions

In this paper, an algorithm for choosing the component means,
covariances, and weights of a Gaussian sum was proposed with the
property that the standard UKF, when acting in parallel on each
component, maintains uncertainty consistency up to a prescribed
accuracy. The algorithm is based on the observation that the rate at
which the uncertainty becomes non-Gaussian is dictated by the initial
uncertainty in the semimajor axis (radial) direction. Superior compu-
tational efficiency is realized because the underlying optimization
problem that determines the initial Gaussian components only has to
be performed once offline. In particular, with the optimal solution of
Eq. (19), one can either substantially reduce the error in the Gaussian
sum approximation or, for the same error, reduce the number of
Gaussians needed to achieve a prescribed accuracy. Consequently,
the additional application of an onlineweight adaptation scheme for
Gaussian sumuncertainty propagation did not provide any additional
improvement in uncertainty consistency.

Equinoctial orbital elements are an efficient coordinate system for
representing Gaussian sums because the refinement can essentially
be done only along the radial (semimajor axis) coordinate. Such a
computational advantage would not be realizable in ECI coordinates
because refinement would be required along all six state-space
coordinates and, as was observed, Gaussian PDFs become non-
Gaussian more quickly when represented in ECI than when repre-
sented in equinoctial elements. An alternate set of equinoctial orbital
elements, which provided superior accuracy and uncertainty
consistency over the traditional set, especially over shorter propaga-
tion times, was also proposed. Finally, it was observed that a poor
representation of a non-Gaussian state can lead to an inaccurate
prediction error. This can adversely impact data association
(correlation), sensor resource management, collision avoidance, and
anomaly detection.

Appendix

This appendix summarizes the L2 based “Weight Update I”
adaptation method for Gaussian sum propagation proposed in
Terejanu et al. [6]. In what follows, the method is specialized to the
unperturbed two-body problem (with no process noise) in
equinoctial orbital elements. This simple unperturbed problem
provides a baseline for testing this scheme against the proposed
Gaussian sum filter of this paper.

The method assumes discrete-time dynamics and forms new
weights by minimizing the L2 error between the exact solution
governed by the Chapman–Kolmogorov equation and the Gaussian
sum approximation. At the initial time t� t0, it is assumed that the
state PDF is Gaussian with respect to equinoctial orbital elements
x� �a; h; k; p; q; ‘� with mean �0 and covariance Q0; i.e.

ptrue�x; t0� �N �x; �0;Q0�

whereN is the Gaussian PDF defined by Eq. (12). For deterministic
dynamics, it follows that the exact PDF at any future time t > t0 is
given by [21]

ptrue�x; t� �N � �x; t; t0�; �0;Q0�

where  denotes the inverse solution flow from dynamical systems
theory. For the unperturbed two-body problem in equinoctial
elements, it follows that

 �x; t; t0� � �a; h; k; p; q; ‘ � n�t� t0��T (A1)

where n�
��������������
��=a

3
p

is the mean motion and �� is the Earth
gravitational constant. Let

papprox�x; t� �
XN
��1

w�N �x;��;P��

be a Gaussian sum approximation toptrue�x; t�. The updated weights
~w1; . . . ; ~wN are taken to be the solution of the following L2

optimization problem:

~w 	 � ~w1; . . . ; ~wN�T �Minimizew1;...;wN

1

2

Z
�ptrue�x; t�

� papprox�x; t��2 dxXN
��1

w� � 1; Subject to w� 
 0; �� 1; . . . ; N (A2)

Upon noting the identity (20), the optimization problem (A2) can
be expressed as a quadratic programming problem (QPP) in the form

~w�Minimizew1;...;wN

1

2
wTMw �wTn

Subject to
XN
��1

w� � 1; w� 
 0; �� 1; . . . ; N (A3)

where the matrixM 2 RN�N and vector n 2 RN have components

�M��� �N ��� � ��; 0;P� � P�� (A4)

�n�� �
Z

N �x;��;P��N � �x; t; t0�; �0;Q0� dx (A5)

The computation of the integral (A5) is the only nontrivial task in
setting up the QPP (A3). For  given by Eq. (A1), the logarithm of
the integrand in Eq. (A5) is quadratic in the last five equinoctial
elements �h; k; p; q; ‘�. Therefore, integration in these coordinates
can be done analytically reducing Eq. (A5) to

�n�� � c�
Z 1
�1
e�g��a� da (A6)

for some constant c� and some function g� dependent on the
semimajor axis a. This resulting one-dimensional integral can be
evaluated using Gauss–Hermite quadrature. In doing so, it is
necessary to choose the correct Gaussian weight function in order
that the quadrature nodes sample the integrand over an appropriate
region. Following Liu and Pierce [22], Eq. (A6) can be rewritten as

�n�� �
Z

N �a; a�; �2��h��a� da (A7)
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Fig. 12 Evolution of the cost metric (36) computed using the unscented

Kalman filter and various GSFs, and applying either no weight update
method or the weight update method outlined in the appendix.
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where

h��a� � c�e�g��a�=N �a; a�; �2��

and g0��a�� � 0 and �2� � 1=g00��a��. For the test case considered in
the simulations section, the functions h��a� are not well represented
by a low-order polynomial. To achieve five decimal digits of
accuracy in the components of n, a 99-point Gauss–Hermite
quadrature method was required.
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