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ABSTRACT

In non-monopulse mechanically scanned surveillance radars, each target can be detected multiple times as the beam
is scanned across the target. To prevent redundant reports of the object, a centroid processing algorithm is used
to associate and cluster the multiple detections, called primitives, into a single object measurement. This paper
reviews several techniques for centroid processing, and presents a new center of mass algorithm that is implemented
with the recursive least squares algorithm. The new algorithm has a unique gating process to enable the primitive
measurement association. Simulation results of the new algorithm are reported. Multiple object merged measurement
handling issues within the centroid processing context are discussed.

Keywords: Surveillance Radar, Range-Bearing Estimation, Centroid Processing, Target Tracking

1. INTRODUCTION

Surveillance radars typically are long-range two-dimensional (range and bearing) mechanically scanned sensors used
to provide early warning against airborne platforms. Monopulse (dual-feed) processing is widely used in modern
tracking radars where precise angle measurements are critical. However, the cost for a monopulse antenna and
receiver is substantially higher. Many surveillance radars are non-monopulse for cost or installation reasons, and
target azimuth estimation must be achieved through a centroid processing scheme.

A wide azimuth antenna beam is common in surveillance radars because a low RF frequency is employed (for
better propagation properties) and the dimension of the antenna may be limited by installation concerns. Further,
a wide beamwidth can be desired because (i) it allows the target to be detected multiple times thereby improving
the overall target detection likelihood, and (ii) multiple measurements may be required to perform range-resolve
processing when certain Doppler waveforms are employed.

When a wide azimuth beamwidth is used, each target is detected multiple times in adjacent range-bearing cells.
For this paper, we will define these detections to be primitives' with associated parameters {R(n), B(k), A(n,k)}.
Here, R(n) is the range of the nth range bin, B(k) is the bearing of the kth azimuth cell, and A(n, k) is the voltage
sample of the target amplitude at the output of the envelope detector for range-azimuth cell (n, k). Figure 1 shows
a range-bearing map where multiple primitives of the same object are collect over a single scan.

The fundamental problem addressed in this paper is the signal processing requirement to combine multiple
adjacent primitives into a single object measurement report. Without this processing, ambiguities occur in tracking
occur because redundant measurements (the collection of primitives) of the same object would be reported. An
estimation procedure is used to associate and cluster the primitives, and to refine the target range-bearing estimate.
The logic associated with the centroid processing technique must allow for missed detections, support conditions
where the target has a large extent, and handle the case of multiple closely spaced targets. Further, the logic to
combine adjacent primitives must be matched to the radar beamwidth and scan rate and be integrated with any
range-resolve processing.

This paper is organized as follows. Section 2 discusses aspects of the surveillance radar system model that
influence the centroid processing algorithm. Section 3 presents a review of centroid processing techniques discussed
in the literature. Section 4 describes a new centroid processing algorithm that is based on the recursive least squares
algorithm. Section 5 presents some simulation results, and Section 6 provides conclusions from the study.
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404-894-8636.



By Detections
/

S

Bearing

[Rl RZ R3 RN]

Range

Figure 1. Diagram showing the detection data in a range-bearing grid.

2. SURVEILLANCE RADAR MODEL
2.1. General requirements on surveillance radars

The general requirements for a military surveillance radar are to provide a good long-range target detection capability
with a modest ability to locate targets (in range and bearing) for acquisition/tracking radar cuing. In modern
applications, a target tracking capability in the surveillance radar is desired to maintain good situation awareness
over the air picture. The requirement to survey a large air space competes with the desire to provide high-quality
measurements to support a tracker at a modest update rate. Meanwhile, the desire to use Doppler processing to
handle clutter competes with the desire to have a long unambiguous target detection range.

An important radar system parameter that determines the centroid processing accuracy is the number of detec-
tions (i.e., pulses) available when the radar antenna scans across the object. From Skolnik? pg. 2.16 the number of
pulses received between the half-power beamwidth is computed as

@)AZ_deg (1)

N =
4Z = 6. PRI-RPM - cos(e; — ¢)

where © 4z _geq is the half-power azimuth beamwidth measured in degrees, PRI is the pulse repetition interval, RPM
is the rotation rate of the antenna, e; is the ¢th target elevation, and € is the elevation pointing angle of the mechanical
antenna. The cos(e; — é) accounts for the apparent azimuth beamwidth change with respect to the target elevation.
The maximum unambiguous range is given by R, = c¢- PRI/2. If we make the substitution for PRI = 2R, /c, then

eAZ_deg - C (2)

N =
4%~ 6.R, -RPM- cos(e; — €)

This expression shows that to maximize N4z, which is desired to enhance the azimuth estimation accuracy, then
there are two choices: one is to slow the rotation rate of the antenna, the other is to reduce the unambiguous range of
the radar. Reducing the rotation rate has the negative impact that the surveillance update rate of the air picture is
reduced. The reduced unambiguous range is undesirable unless the radar is able to conduct range resolve processing
by using alternate PRI values within the beam time-on-target.

If the radar is using coherent processing for clutter suppression (discussed in Section 2.2), then PRI switching
is possible after each coherent dwell. If the number of pulses in a Doppler dwell is Np = Tp /PRI where Tp is the
coherent dwell time, then the number of coherent processing intervals that fit into the time the beam is on the target
is Ncpr = Naz/Np. Substituting into (1),

(—)AZ_dEg (3)
6-Np-PRI-RPM - cos(e; — €)

Ncpr =



To maximize the unambiguous detection range when using multiple PRI range resolve processing (discussed in Section
2.3), there is a mutual requirement to maximize the PRI and the number of CPIs used for processing. Equation
(3) shows that to maximize Ngp; while holding the PRI constant, then one would have to reduce either Np or
the antenna rotation rate. Reduction of the latter has negative consequences as already discussed, while reduction
of the Np is undesirable since it impacts the Doppler channelization capability and hence the clutter suppression
characteristics.

2.2. Doppler processing in low PRF surveillance radar

Traditionally, Doppler processing was avoided in long-range surveillance radars because of the requirement to support
a long unambiguous range. However, because Doppler processing is an excellent means for suppressing clutter, a
technique® used more recently is to employ a low PRF pulse Doppler waveform and to ignore the Doppler ambiguity.
The outputs of the Doppler filter bank are merged into two reduced outputs: a moving target output, and a stationary
target output. The actual range rate is never estimated. This technique has the advantage that stationary clutter
is contained only in the merged stationary Doppler channel output. Typically, two separate CFAR processes are
implemented, one for the moving target channel and one for the stationary target channel.

2.3. Range resolve processing

With the use of Doppler processing, the radar is only able to change the PRI after each CPI. Following Morris® pg.
202, define the following integers
PRI;
N; = , 1€{l,...,.M 4
Bk el M} @
where PRI, is the ith PRI in the set and M is the total number in the set. Then the maximum unambiguous range
that can be resolved is given by

c-PW
5
3 (5)
To maximize the number of PRIs available for range resolve processing, one would set M = Ngpy. That is, the
number of separate PRIs that can be used is governed by the number of CPIs that will fit into the time-on-target of
the scanning beam.

R, =lem(Ny,...,Ny) -

Since Nop; determines the number of independent measurements of the target that is received, it is tightly
coupled to the achievable azimuth accuracy that can be achieved in a low PRF pulse Doppler surveillance radar
using multi-PRI range resolve processing. Given this, one can see that the achievable azimuth accuracy depends on
on a number of system parameters including {© 4z, Np, PRI, RPM, R, }.

2.4. Cramer-Rao bound on range and bearing

As summarized by Blair, the Cramer-Rao bound for a conventional non-pulse compression radar is approximately

. PW

var(R) > S-SNR - fBip (6)

where BrF is the IF bandwidth of the radar. Typically, 8rr = 1/PW.

The approrimate Cramer-Rao bound on the azimuth accuracy of a surveillance radar was derived by Swerling.> In
the derivation, the radar model was specifically for a conventional pulsed radar with no Doppler processing employed.
The data model for the problem was given by {A(k), B(k);k = 1,...,N} where A(k) = A(n, k) for some n is the
target amplitude measured on the output of the radar pulse envelope detector, and B(k) is the measured bearing of
the kth pulse. The total number of pulses N = N,z is determined by the radar beamwidth.

The approximate bound derived by Swerling is

(0.49)2 * @1242

B) >
var(B) > N.i, SNR

(7)
where it is assumed that SNR > 1. See Barton® pg. 53 for the translation of the Gaussian beam parameters in

Swerling’s original work to the formula in (7). To get to this closed-form approximation, Swerling had to make a
number of assumptions:



Al. The beam shape is Gaussian.

A2. The bearing resolution AB is large enough for statistical independence of the noise received on each pulse
return.

A3. The bearing resolution AB = b(k + 1) — b(k) is sufficiently small such that (i) the time between pulse transmit
and receive yields a small motion of the beam, and (ii) the “averaging process” in the likelihood function can
be neglected.

A4. The bearing resolution AB is small compared to the beamwidth.

A5. The bearing resolution AB is small enough to allow for a certain mathematical approximation (sum replaced
by an integral).

The question of interest is: can the the bound on the azimuth accuracy of a coherent radar be approximated in (7)
by replacing N4z with Nop;? This issue is pertinent because the coherent radar only receives target detections
after each coherent dwell and not on a pulse-to-pulse basis. Of the assumptions, A3—A5 could be questionable in the
coherent radar case. Hence, the bound may not be useful for predicting the accuracy of this type of radar.

2.5. Radar received power

At time t(k), the radar points the beam at bearing-elevation angles (b(k),é(k). Suppose there are Ny targets, and
denote (b;(k),e;(k))t to be the bearing and elevation at t(k) of the ith target. Next denote R(n) = n - AR (where
AR = ¢-PW/2) as the range of the leading edge of the nth range bin and Z,, C {1,..., N7} to be the set of target
indices for targets that fall into the nth range bin, i.e., targets with range R € [R(n), R(n+1)]. Then the total power
received at time ¢(k) in the nth range bin is

P,(n,k) = Z 6;(n) PG (bi(k(l,;)ig?})z?stc (n) Ge\20; -

i€,

where ;(n) is the bin split fraction for target ¢ in range bin n, P; is the radar transmit power, G(b;(k),e;(k)) is
the antenna gain towards the ith target, Gs:.(n) is the sensitivity time control gain for the nth bin, G, is the pulse
compression gain, A is the wavelength, o; is the ith target radar cross section, L is the radar receiver loss, and R; is
the ith target range. Note that since the antenna has a fixed scan time interval, k also references a specific pointing
direction b(k).

Bin splitting is the event where the returned radar pulse straddles two range bins, thereby dividing the total
returned power into the two range bins. Bin splitting occurs because there is always a mismatch between the radar
receiver discrete range bin positions and the target range. The fraction of return power from the ith target that falls
in the nth range bin is

rem(R;/R(n—1))/AR, R; € [R(n—1),R(n)]
di(n)=<¢ 1—rem(R;/R(n))/AR, R;€ [R(n),R(n+1)] (9)
0, otherwise

where rem(-) is the remainder function. As discussed in Section 4, the presence of target bin straddle enables the
range estimate to be computed using the power weighted average of the bin range values.
2.6. Antenna pattern

A typical mechanically scanned surveillance radar antenna is a parabolic reflector. The antenna is usually constructed
with pattern shaping to control the sidelobe levels. For example, cosine shaping may be used for the azimuth pattern
and csc? shaping may be used in elevation pattern to give it a constant elevation gain. Given the antenna is pointing
at bearing-elevation angles (b, é), then the antenna gain’ at bearing-elevation angle (b, €) is

dmpgasas
22

where (a1,a2) are the dimensions of the antenna and p, is the efficiency. For the cosine antenna pattern,

E(8,a,)) = % [sinc ("Si;(e) + %) + sinc (GSITH(G) - %)] (11)

Go(b,e) = (10)

N 2
(B - bai,2) - Ble - &,a2,))




where sinc(z) = sin(rz)/z. The elevation beam pattern is modified with csc? shaping so that the actual gain” is

2 _é .
G(b,e) = Go(b,e) - %, e1<e—é<ey 12)
, Go(b, €), otherwise

where e; and e, are the angular limits when csc? shaping applies.

In Swerling’s derivation of the CRLB, and in other azimuth estimation techniques discussed in Section 3, a
Gaussian beam pattern is assumed. The Gaussian model can be made a close approximation to patterns like (12)
that are typical in surveillance radars.

3. SURVEY OF METHODS FOR CENTROID PROCESSING
3.1. Overview

In this section we review a number of centroid processing techniques that appear in the literature. In most cases, the
techniques are formulated for surveillance radars where the primitives {R(n), B(k), A(n, k)} are measured for each
pulse transmitted and N4z measurements are presumed made. The applicability of these techniques to the coherent
radar case, where only Nop; measurements are made instead, will be discussed in the next section. Further, most of
the references do not discuss aspects of performing refined range estimation within the centroid processing context
(i-e., only azimuth estimation is performed).

3.2. Moving window estimator (a.k.a. beamsplit estimator)

This estimator, as discussed by Walker® et al., is a simple process that maintains a running count of the pulses (in a
given range bin) that exceed a threshold. The window size for the running count is equal to Ngz. Two hit density
levels are established, which indicate the beginning and end of the target. If the levels are achieved at bearings B(k;)
and B(kz), then the target azimuth is estimated as

Since the estimator utilizes a moving window of pulse detections to estimate the target azimuth, it is known as the
Moving Window estimator. Also, it is termed a Beamsplit Estimator since the estimate is formed by “splitting” the
detections within the beam. Walker® et al. call the estimator an End Condition method, and also identify a Scan
Density method. The difference between the two is that the latter uses a shorter window of pulse detections when
forming (13).

(13)

Galati and Struder® summarized a number of the problems with the Moving Window estimator. The accuracy is
dependent on the SNR, N4z, and the beam shape. Further, the estimator produces a biased estimate, where the bias
is a function of the SNR. Also, the azimuth error does not significantly decrease with increasing SNR because, as the
SNR increases, the begin/end points shift away from the center of the beam and the measurements that determine
the azimuth estimate remain near the detection threshold.

3.3. Two-pole filter detector/azimuth estimator

Cantrell and Trunk!® proposed an IIR filter (two pole integrator) for mutual target detection and azimuth estimation.
They noted that a difficulty with the Moving Window approach is the requirement to save a large number of pulse
returns. Also, a double-loop feedback integrator method by Cooper and Griffiths!! was biased as a function of SNR
and produced poor results (relative to the CRLB). The two-pole integrator differs from the double-loop integrator
in that the two poles are not required to be in the same location.

The general form of the two-pole filter output is

o0

y(n,0) = Z h(k)A(n,t — k) (14)

k=0

where the filter h(k) has the transfer function




The values of the poles (p1, p2) are found by a search technique, and the optimal values are a function of the number
of pulses N4z. Detection performance for this filter was shown to be within 0.15 dB of the optimum.

The azimuth estimate is formed by processing y(n,£). Two azimuth estimators were considered for the two-
pole filter: a threshold-crossing beamsplit estimator and a maximum output estimator. The former involves finding
the angle B(k;) for the First Target Detection and the angle B(ky) for the Last Target Detection. The azimuth
is then estimated the same as in (13). The second estimator simply involves detecting the maximum amplitude
y(n, k*) = maxy y(n, k) on the output of the two-pole filter. Then B(k) is set equal to B(k*). The authors found
that the threshold-crossing beamsplit procedure had a bias that was a function of the SNR, while the maximum
value estimator had a fixed bias value. Hence, they recommended the maximum value estimator. The RMS accuracy
of the estimator was reported to be only 15% greater than the CRLB.

3.4. Maximum likelihood azimuth estimator

Swerling® showed that the maximum likelihood estimator (MLE) for the bearing was of the form

B« argr%z;xz A(k)? - g (LM) (16)

c0®az

where g is the Gaussian two-way power gain pattern of the antenna, and ¢y is a scalar that converts © 4z into a
Gaussian beam variance parameter. Note that A(k)? is proportional to SNRy.

Bernstein!? derived the MLE and focused on the case of quantizgd data, where the target amplitude return was
limited such that A(k) € {0,1}. The maximum likelihood estimate B was shown to be the estimate that solved the

condition
Naz

Y A(k) - w (B - B(k;)) =0 (17)
k=1

The weight w is a function of the the beam shape, the quantization threshold, and the SNR when the beam is pointed
directly at the target (i.e., peak SNR). This estimator is implemented by convolving the pulse amplitude sequence
{A(k)} with a beam pattern function that is based on possible target estimate B(¢),

Naz

=" Ak)-w (B() - B(k)) (18)
k=1

A zero-crossings analysis is then performed to find to find the value y(¢*) = 0, and then B = B(¢*).

Galati and Struder® developed a “binary Bernstein estimator,” where the weights w were quantized into binary

values {—1,0,1}. The motivation for this algorithm was that it was easy to implement with a tapped delay line, and
the optimal weight values of the Bernstein estimator required knowledge of the peak SNR of the target. The binary
implementation requires only specification of two parameters that define the number of zero-weights and the number
of +1 weights. Analysis showed that the performance of the binary estimator was only 0.5 — 1.0% worse than the
non-binary weight estimator. One artifact is that the estimation performance actually gets worse with increasing
SNR beyond an algorithm-controlled inflection point.

In newer work, Galati and Struder!® formulated a maximum likelihood estimator that takes into account missing
detections. The MLE expression for this problem takes the form of

A~

[N Ak) - a(k) - wr (BO) - B®))] - [ZN”A() a(k) - w (é(@ B(k))]: (19)
N4 A(k) - 2(k) - ws (B() = B(K)) | - [SN4F A(k) - a(k) - wq (B(0) - B(R)) | (20)

where w; is one of four weights that are based on the Gaussian two-way power gain pattern and its derivative.
A detection event z(k) € {0,1} modifies the weight. Here, A(k) is considered in its full (not binary) form. Also
considered was the use of interpolation to find the best estimate of the zero crossing, and the impact of truncating
the weights w; to a shorter filter length.



3.5.

Beam shape centroid estimator

Cole! et al. have developed a collection of Association and Clustering algorithms for use in a modern airport sur-
veillance radar. This particular radar uses coherent processing, hence some of the issues discussed in Section 2
were addressed. In this implementation, a different algorithm is selected based on the quality/type of measurements
received. Some aspects of the algorithms are tailored to specific properties of their surveillance radar. The following
algorithms are employed:

4.

4.1.

Single CPI Measurement. When only a single primitive is received, then the azimuth of the target is set to
B(k) = B(k).

Beamsplit. In cases where the measured data are affected by exception conditions (e.g., receiver saturation), a
beamsplit estimate of the azimuth is computed, include
o~ B(ky) + B(ks)

B(k) = = —= (21)

where B(k;) is the bearing of the first report of the cluster and B(ks) is the bearing of the last report.

Center of Mass. When primitives are received on adjacent angle cells, but only for one of two CPIs used on
each range-angle cell, then the azimuth estimate is formed as
- B(k)-A(k)+B(k+1)-A(k+1)

B(k) = AR) T A(k+1) (22)

Interpolation. When primitives are received on adjacent azimuths and with the same PRIs, then the azimuth
estimate is B(E) 4 Bk + 1

5 + +

B(k) = (k) 5 ( ) + K (log A(k) + log A(k + 1)) (23)

where K approximates the slope of the antenna pattern log difference curve.

Beamshape Match Processing. When primitives are received three or more consecutive CPIs on the same PRI,
then a beamshape matching algorithm is used. The first step in the algorithm is to compute an error metric
to determine if more than one target is present. If B(k) corresponds to the bearing with the largest A(k) in
the cluster, then the computed error is

(A(k—l) a(k—1)>2+(A(k+1)d(k+1))2] (24)

- A(k) a(k)

k) =ak) -\ Tam " am)

where d(k) is the predicted amplitude based on the known antenna pattern. The error calculation is actually
“iterated” using a number of finer-spaced beam positions, and the minimum retained. The value of (k) is
compared to a threshold 7. If ¢(k) < n, then a single target is reported with azimuth estimate corresponding to
position of the finer-spaced beam that produced the minimum €e(k). If e(k) > 7, then two targets are reported.
The azimuth estimate of the two targets is generated using a “modified beam splitting algorithm” that is not
described.

NEW RECURSIVE LEAST-SQUARES CENTROID PROCESSING ALGORITHM

Algorithm for range-bearing centroid processing

This section describes a new algorithm that expands upon previously developed concepts. The algorithm involves
two parts: (i) cluster and centroid the primitives along each bearing strobe, and (ii) associate the range clusters along
adjacent bearing angles, then compute a refined range-bearing centroid. The novelty of the approach involves the
use of a recursive least squares algorithm with a gating process that is incorporated into the association/clustering
procedure.



4.1.1. Perform range clustering and compute partial centroids

The first part of the clustering algorithm involves finding adjacent range cells that have detections. Let R(n) be the
range value of the nth range cell. For bearing angle B(k), suppose that we have multiple range cells with detections
and the power value for the nth range cell is P(n,k). Denote Z; as the collection of indices for which adjacent
range cells hold detection (for bearing B(k)). We group these adjacent cells into range clusters, and compute the

power-weighted range centroid,
Znezk Pr.(n,k)R(n)

Znezk P’f‘ (n’ k)
If there exists multiple clusters of measurements per bearing angle, {I,El), .. ,I,(cM"’)}, then we obtain a set of centroids

for that bearing,
t(k) = {r1(k),...,7p(k)} (26)

For each range estimate 7#(k) we compute an associated partial weight of power values,

w(k) =Y P(n,k) (27)

neLy

(k) = (25)

If multiple clusters exist, we compute multiple cluster weights,
W(k) = {w1(k),...,0m(k)} (28)

4.1.2. Perform bearing clustering and compute centroid

Part 2 of the algorithm involves a gating process to associate the range clusters across multiple bearing angles. The
range centroid of the target is recursively computed, as the clusters are associated. Let R(k) be the centroid estimate
of the range using measurements up to bearing k. We identify the best potential range cluster to be the one that is
the nearest neighbor to the current estimate,

#(k + 1) = arg min ‘R(k) —#i(k +1)
J

, fFi(k+1)er(k+1) (29)
Assign w*(k + 1) to be the corresponding weight. Determine if the next measurement is within the gate defined by
‘R(k) i (k 1)‘ <or (30)

where og is a pre-defined gate size. If the closest range value validates (i.e., is within the gate), then we update the
estimate of the range position using a Recursive Least Squares processing'# approach,

Rk+1) = R(k)+Gk+1) (f(k +1)* R(k)) (31)
Glk+1) = S(k+1)-o(k+1) (32)
Y He+1) = ZTUE)+a(k+1) (33)

The initial conditions for the recursion are E,;ll = 1y,, and Ry, = 4, where k; is the index to first angle where the
target is detected.

If this processing is conducted for a radar that is employing range resolve processing, then the gating and
association process must be done for each ambiguous range 7;(k) = 7#(k) + j - Ry, for j € {0,1,2,...}.
4.1.3. State transition logic for target detection

Detection of the target is declared only when a specified number of primitives is found over adjacent angles. To
allow for possible missed detections over the sequence of bearing angles, an M-out-of-NN logic is employed. A state
machine is implemented that keeps track of the detection criteria. If we have the condition of

R(k) —#j(k+1)| < op, for some j, (34)
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Figure 2. State transition diagram to implement 3-out-of-5 target detection logic.

then we declare a “hit” in the state transition diagram, otherwise a “miss” is declared. The update of the range
centroid estimate is done recursively within the state transition model,

. R(k k 1(“*k 1—”k), Hit,
Rles 1) - { RO+ GG+ (- ) = RE), i 55)
R(k), Miss,
Similarly, we compute the bearing angle centroid estimate using the same recursive weighted least squares estimation
technique,
. B 1(1%* 1)-B ) Hit,
Blk+1) = A(k)+G(k+ ) (k+1) (k) it (36)
B(k), Miss,
The values used for M and N depend on the beamwidth and the scan period of the specific radar. Typically,
N = N¢py. The value of M is selected based on the unambiguous range requirement in (5).

Two common state machines are used: 2-out-of-3 logic and 3-out-of-5 logic. Figure 2 shows the diagram for the
case of 3-out-of-5 logic. The letter “H” represents a hit, while “M” represent a miss. This diagram has a total of
seven states. To achieve a target detection, state five must be achieved. Target termination (state seven) requires
two misses in a row. Note that once state five is reached, the state machine will stay in state five as long as detections
are received. Hence, objects greater than 5A B will be maintained as one object.

4.2. Centroid processing with range, bearing, and Doppler

Some surveillance radars are able to make range, bearing, and Doppler (radial velocity) measurements of the target.
Computation of the centroid becomes a three-dimensional problem for these sensors, and the algorithm shown above
must be modified to include the third dimension (i.e., the Doppler measurement). At bearing angle B(k), suppose
that there is one or more measurements in the Doppler bank output of the nth range cell. Each measurement has
a separate Doppler frequency and power value, which we denote as {f(n,k,¥), P.(n,k,£)}. Here, £ € {1,...,Nr},
where £ is the index to the Doppler filter number and Ny is the total number of targets detected in the nth range
cell at bearing angle B(k).

The measurements in the nth range cell must be grouped (clustered) with those in adjacent range cells. The first
step in the extended algorithm is to simultaneously cluster measurements in Doppler and range along each bearing
angle. Let Z;, denote the set of adjacent range cell indices for which there are measurements at bearing angle B(k).
Within the set, we find the indices (range and Doppler) corresponding to the largest peak,

(n*,£%) + argmaexP(n,k,E), n €Iy, le{l,...,Ng} (37)

n7



Let f* = f(n*,k,£*), be the measured Doppler frequency corresponding to the peak value within the cluster of
adjacent range bins. Measurements in the adjacent range bins are clustered provided each cell has a measurement
with a Doppler value within a Doppler gate centered on f*. That is, provided that there exists an index ¢ such that

|f(n,k,€)_f*‘<O'F, Vn € Iy (38)

then the adjacent range bins can be clustered. If more than one measurement exists within the Doppler gate, then
we select the closest one,

gn <—argmljn|f(n,k,f) _f*| (39)
where /£, represents the selected Doppler bin index for the nth range bin.

Now, the set Ly, = {{, : n € I} denotes the Doppler bin indices in the range cluster used in the clustering
operation. If no measurement exists for a given range bin such that (38) and (39) hold, then there is a break in
the cluster (i.e., measurements in bins n — 1 and n form separate clusters). Once a validated set of range bins is
identified, we compute the weighted estimate of the range and the Doppler frequency,

> nez, e, B(n)Pr(n, k, L)
ZnEIk,Zeﬁk PT(na ka E)

fk) — Zmctnten, [k OP(m )
2 onetipecy Pr(n,k, )

If multiple Doppler filter measurements are present within one range bin, clustering can be repeated to find multiple
targets. Once the set Ly is identified within a range bin cluster, those primitives can be pulled from consideration

(k) =

(40)

(41)

and the process repeated starting with (37). A new set of measurements L',(Cz) can be obtained and the centroid
computed for these primitives.

After centroids have been computed for each bearing angle, then the measurement can be clustered over multiple
bearing angles as is done above. The only caveat is that the association process has to be done in both the range
and Doppler domains. Within the recursive weighted least squares estimation process, let R(k) be the present range
estimate and ﬁ’(k) be the Doppler frequency estimate. The candidate measurement at the next bearing angle for
inclusion in the cluster is selected as the nearest neighbor,

|R(k) = 75k + 1)

2
ORr

P Ee) - fik ]

2
IF

+

(f'*(k +1), f*(k + 1))  argmin (42)

This measurement is included provided that ‘R(k) —7i(k+ 1)‘ < ogr and ‘ﬁ’(k) — filk+ 1)‘ < o, otherwise a

“miss” occurs and no measurement is included at bearing angle B(k).

4.3. Merged measurement handling within the centroid processing algorithm

In military applications, it is possible that there will be multiple closely spaced air targets (e.g., a formation of fighter
planes). When the spacing between the planes is equal to or less than the range/bearing resolution of the surveillance
radar, then the centroid processing will merge the primitives from all targets into one single object. The reported
measurement will have the position that is the centroid of the targets. In some instances, the merged measurements
might be considered a good thing: only one report is needed to cue a tracking radar. But if a complete air picture
is desired, then the merging of targets into a single object is not desired.

There are different ways to handle the merged measurement problem within the centroid processing algorithm,
and we will only sketch the ideas here. First, one will want to detect the presence of merged measurements. This can
be done by evaluating the range and bearing extent of the reported object. If small (single range-bearing cell size)
targets are expected, and the report extends beyond the 2 x Ngop; range-bearing cells, then multiple targets can be
expected. Also, using the beamshape fitting concept of Cole! et al. would allow for multiple-target detection.

Once the presence of multiple targets has been detected, then a parsing algorithm is required to break the
primitives into multiple object sets. To accomplish this, one typically looks for the largest change in the primitive
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Figure 3. Centroid processing bearing estimation simulation results.

measurements between adjacent cells. For example, if we define A#(k) = #(k + 1) — #(k), then by identifying the
index k within an object cluster that produces the largest A#(k) could be used as the point to separate the primitives
into two sets. Similarly, this could be done in the Doppler dimension.

Another potential way to improve merged measurement handling is to include feedback from the target tracker
when the primitives are separated into object clusters. Therefore, if two targets are initially separated and then
come together, the knowledge of the multiple objects present in the track database could be used by the centroiding
algorithm to parse the primitive measurements.

5. SIMULATION RESULTS

The range-bearing centroid processing algorithm described in Section 4 was implemented in a tracking simulation.
The radar was modeled to have a 3.0° beamwidth and switched among Nop; = 5 separate PRIs as the beam scanned
a target. Figure 3 shows the azimuth estimation accuracy achieved in the simulation. For high SNR conditions, the
accuracy approximates 0.5°. Hence, the azimuth estimation is improved by a factor of 3.0°/0.5° = 6. Also plotted
is the CRLB from (7) where Nopr was used instead of Naz. As shown, the performance achieved in the simulation
is many times worse than the bound. As discussed in Section 2.4, it is questionable whether the bound is valid for
the coherent radar model, and the simulation results suggest as much.

6. CONCLUSIONS

In surveillance radars, the problem of associating and clustering primitive measurements into object reports with
refined range-bearing estimates is accomplished by a centroid processing algorithm. In this paper, we reviewed a
number of techniques used for centroid processing: moving window estimator, two-pole filter and maximum output
estimator, the maximum likelihood (Bernstein) estimator, and a beam shape estimator. We also presented a new
center of mass algorithm that utilizes a weighted recursive least squares algorithm. Simulation results were shown
to characterize the azimuth estimation accuracy versus SNR. Potential techniques for handling merged measurement
conditions within the centroid processing algorithm were discussed.
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