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ABSTRACT

Association and fusion of passive direction finding (DF) reports with active radar tracks from airborne targets is challenging
because of the low dimensionality of the common kinematic measurement space. Often, multi-target scenarios lead to
significant data association ambiguity. Classically, the approach to this problem is a simple hypothesis test wherein a
batch of DF sensor measurements is associated with either zero or one of the radar tracks; assignment of multiple DF
tracks to a single radar track is allowed without regard to compatibility, and this can lead to detrimental results. This
paper develops a new approach for managing the ambiguity. The problem is formulated as a two-dimensional assignment,
and any association ambiguity is determined from AH@est solutions. Firm association decisions are made only when

the ambiguity is at an acceptable level. The ambiguity information is also available in real time as an output to the
system operator. An improved batch association score, relative to previous works, is formulated that addresses statistical
correlations between individual measurement-to-track residuals; this new score is a likelihood ratio generated from Kalman
Filter residuals. Where previous scoring methods lead to incorrect ambiguity assessments in certain scenarios, the new
approach yields accurate results. Because the score is recursive, the batch may be extended over an arbitrary number of
measurements, helping to manage association ambiguities over time. Simulation results are shown to demonstrate the
algorithm.
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1. INTRODUCTION

Modern intelligence, surveillance, and reconnaissance (ISR) systems involve a networked collection of sensors on multiple
platforms. The capabilities of these systems are enhanced through geographic diversity of the sensor platforms and the use
of multiple sensor modalities; however, the effectiveness of such systems depends on their ability to automatically fuse the
multi-sensor data into a common operational picture. The specific problem addressed in this paper is the fusion of passive
direction-finding (DF) reports with active radar tracks in a real-time ISR system. The association of DF data is especially
challenging due to the low dimensionality of the measurements and because association ambiguities can persist over a
significant amount of time. This paper develops a new approach for managing the ambiguity in the association problem.

Measurement-to-track association plays an important part in network-centric tracking systems and as a result has been
a topic of much research? Trunk and Wilson posed the DF-to-radar association problem as a multiple-hypothesis test.
The algorithm assumes that the DF measurements have been associated together into measurement “batches” that presume
a single target. An association score is then calculated for each possible DF-batch-to-radar-track pair. The score is based
on the normalized residual errors between the angle-only measurements and the predicted radar track states. To handle
different numbers of DF measurements in the batches, the sum of residuals is converted into a cumulative probability of
obtaining at least the observed value o%emeasurements, assuming & distribution (in this paper, we show that this
assumption is not always valid). The algorithm then makes an association decision based on the probability values. The
decision rules consist of three different probability thresholds and a required margin between the two best probabilities.
Together, these rules form five distinct decision regions—firm correlation, tentative correlation, tentative correlation with
some track (but cannot determine which), tentatively uncorrelated, and firmly uncorrelated. The thresholds were deter-
mined empirically via simulation to achieve desired error probabilities. Each DF track was considered independently with
the result that more than one DF track could be associated with any given radar track.




A significant drawback of this approach is that the decistmegholds depend on the target geometry. Trunk and
Wilson calculated the decision rules for a variety of twogtd scenarios with different inter-target spacing; utuioately,
their results do not generalize to all possible scenarigsa fesult, others have adapted this basic approach by cigangi
the decision rules and thresholds based on different expetal technique$® Saha mapped Trunk and Wilson'’s statistic
into a figure of merit (FOM) rather than a cumulative probipilThis new discriminant was used to analytically evaduat
the probabilities of correct and false association for @gigcenarid (Saha’s score was based on the filtered DF track
states rather than the DF measurements). Wang, et al dirted a new discriminant based on a fuzzy synthetic function
and derived a triple-threshold decision policy based orstatistics of the discriminarit.

These previous works are variations of the same basic apipread they share the following characteristics: (i) an
association score based on measurement-to-track ortivetcek residuals, (ii) a set of analytic or empirical déan rules
used to detect ambiguity, and (iii) independent associati&risions for each of the DF tracks. In this paper, we intced
a new algorithm that improves on the basic approach in eatiiest areas.

First, we note that when filtered or predicted track statesheeiDF or radar—are used to compute a residual error,
subsequent residuals will be statistically correlated. Wieshow that under certain conditions, the correlatiomween
residuals is significant and cannot be ignored. For traekaick fusion, the correlation is due to common processenois
in the tracking filters. For this problem, Saha derived anresgion for the steady-state cross-correlation matrix and
showed conditions where the performance of the fusion algorcan be improved. For measurement-to-track fusion,
the correlated residuals are due to the correlation betivaek state estimates over time. In this paper, we propossva n
likelihood ratio score for measurement-to-track fusioedshon Kalman filter updates. The filter updates have theteffec
whitening the residual errors. We show how this new likeditioatio score leads to significantly better ambiguity eates
than the old approach.

The second problem deals with the sensitivity of the deoisides to the target geometry. Empirical methods for
calculating the decision rules are impractical in real tis@one must hope that the observed geometry resembles some
pre-computed scenario. Analytic methods can be appliedieter, the decision rules are still difficult to compute in
complex multi-target scenarios. Rather than mapping theridninant function into difficult-to-compute decisiorgrens,
we instead pose the DF-to-radar fusion problem as a twostiioeal assignment. Given this problem formulation, a
number of techniques exist for measuring the ambiguity érsthiution spac&:'! We use one such technique, based on the
k best solutions, to compute the probability that a particaksignment is correct. We make a firm association decision
when the probability of correct association exceeds a liotds

Third, the assignment problem formulation allows us to abgrsthe DF-to-radar associations jointly rather than in-
dependently. It is possible that more than one DF track reigis from a single target; however, assigning the DF tracks
independently means that there is no way to deal adthflictbetween assignments. For example, we may know that two
different DF tracks correspond to radars that do not exighersame target platform. The assignment problem approach
lets us allow certain hypotheses but exclude others frorsideration.

Our contribution is a new DF-to-radar fusion algorithm. Wenh a two-dimensional assignment problem using a new
likelihood ration score. The solution to the assignmenbfm provides the best possible matching between the Dkgtrac
and radar tracks; however, we use thbest solutions to calculate the probability that an assatns correct. We then
compare that probability to a firm decision threshold.

The remainder of this paper is organized as follows. Firstpvovide an overview of the improved DF-to-radar fusion
algorithm. We then derive a likelihood ratio score basedesidual errors. Next, we show how correlated residualstffe
the statistics of the discriminant function used in the basepproach and elaborate on the conditions when thistaffe
significant. We then propose a new score based on Kalmam &iitiates that produce a sequence of independent residual
errors. Next, we describe thiebest algorithm for measuring the ambiguity in the assigmnpeoblem. We then provide
simulation results and conclude with a brief discussion.

2. DF-TO-RADAR ASSOCIATION ALGORITHM

The DF-to-radar fusion algorithm is illustrated in Figurelf this simple example there are two DF tracks indicated by
z; = [2zi(ta), ...,zi(tiNi)]T, i € (1,2), where each track is a collection &f; bearing measurements sampled at times

t;. Three radar tracks are indicated Ky = [xj(tjl), ...,xj(tij)]T, J € (1,2,3), which represents a sequenceldf
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Figure 1. A block diagram of the DF-to-radar fusion algorithm, illustratirsinaple example.

multi-dimensional radar measurements at timgs Each of the DF measurement batches,and radar measurement
batchesX;, are formed by the respective DF and radar trackers and aseimed to belong to a single target. We define
the association hypothesés,, to represent the assumption that DF tragkand radar trackX; are the same target. In
the example, there are six different association hypothe$he costg(h;;), of each of these association hypotheses is
found by computing a negative log likelihood ratio (NLLR)t this point, we gate out (remove from further consideration
any h;; whose cost is greater than zero; in our example, only thresilpiities remain. We then solve the assignment
problem and find two hypotheseH,,, k € (1,2), which are defined to be sets bf; that assign every DF track to zero
or one radar track (in the figure, we have left off the “zero8igements for clarity). We will show how the probability
of each#, is derived from its total cosg(Hy) = Yijihi; ety c(h;j). We can then calculate the probability of edgh

by summing the probabilities of th#,, in which it appearsP(hi;) = Yy, en, P(Hi). For example, the association
hypothesishos appears in both; and?#-, so it has a probability of 100%,, andh,, each appear in one hypothesis
and have probabilities of 60% and 40%, respectively. Rinale compareP (h;;) to a firm decision threshold,. In this
example, onlyP(hq3) exceeds the threshold because the other two associat®m@srdniguous. Note that this approach
allows firm association decisions between some pairs dfgragen if ambiguity exists elsewhere in the scenario.

For reasons of computational efficiency, gating is oftenedeith one or more simple tests before the cost is calculated.
For example, one could simply compare the angle between Eharid radar track states and reject differences that fall
outside a fixed gate size. The cost acts as the final gate.

There is a tradeoff with respect to the size of the DF measaneiyatch. A large batch size includes more information
from the track history that may be needed to resolve amlgg ibut a short batch size allows the algorithm to react
quickly to certain events such as a single-sensor track .sWwhp use of the dimensionless likelihood ratio allows us to
have the best of both worlds. Because the likelihood ratidinisensionless, comparing scores is valid even when the
batch sizes are different (in previous work different sized batches were handled by converting theesicoa cumulative
probability). As we will soon see, the likelihood ratio isl@sated recursively, meaning that it is simply updatedhwit
each new measurement. This means that there is no inhemaputational cost associated with a large batch. We take
advantage of this as follows. With each new DF measuremantypaate the likelihood score that was stored at the last
iteration. We also calculate a new score based on only théMameasurements. The better of the two scores is used in
the association algorithm and saved in memory for the neratibn. In this way, the batch size can be arbitrarily large
but it is “reset” as the most recent history may demand.



3. LIKELIHOOD RATIO DERIVATION

In the previous section, we defined the hypoth@sisto be the set of DF-to-radar association hypothesgs,such that
each DF track is assigned to zero or one radar track. Everinmpgesscenario, we must consider many different hypotheses
For example, if both the DF sensor and radar detect two ®&rifegn there are eight possible associations leading to the
seven different hypotheses shown in Table 1 (assumingesamgignment). The association evkpt indicates that DF
tracki: does not associate with any of the radar tracks, and the gygnindicates that radar tragkdoes not associate with

any of the DF tracks.

’ Associations H hio ‘ hao ‘ ho1 ‘ hos ‘ hi1 ‘ hiso ‘ hoy ‘ hoo ‘
4 Targets|| O O g d
3 Targets O d d
3 Targets O 0 0
3 Targets|| O O O
3 Targets|| O O O
2 Targets O O

2 Targets O a
Table 1. Seven Hypotheses for the Two-Sensor, Two-Target 8oena

Hypotheses

In order to form an assignment problem, the cost of €dgimust be the sum of the costs of the individual association
hypothesed$? 3
c(Hr)= >, clhy). @)
i,5:hijeH

One way to form such a cost is to use the negative log liketih@tio, c(h;;) = NLLR(h;;). We derive the NLLR by
first defining the likelihood., of the following association hypotheses:

L(hiy) = Px-PR7(hig) - PL (hij) - f (2, X |hij) 2
L(hio) = P -PP? (hio)- (1= PE™ (hao)) - f (zilio) 3)
Lhoy) = Py-(1-PF7 (hoy))- PE™ (hoy) - F(X;lhos) (4)

In these expressiongy is the probability of a new targePp (h;;) is the probability that the DF sensor or radar (as
indicated) detected the target presumedjp and f is the probability density function of the measurementegithe
presumed target (explained later). It is important to ersjzteathat the probability of detectio®y (h;;), for both the

DF and radar sensors, depends on the presumed target. Foplexdhe radar cannot detect certain DF targets that are
beyond the radar’s detection range (due to the inherentradgantage of passive DF). On the other hand, the DF sensor
cannot detect a radar target unless the target’s radariv@lgdransmitting. Often, the information needed to ctdoa
these values is not known, so we make certain assumptiong dissume thalp (h,;) = Pp for a particular sensor, then
these terms will cancel out in the likelihood ratio and cangmered.

With these definitions, we can compute the likelihood of aygdihesis,

L(Hy)= I L(hi) (5)

i,5:hij€H

We can separate the individual association hypotheség,iimto three distinct groups representing joint DF and radar
detections, DF-only detections, and radar-only detestidine likelihood is then written

N Npr—Npg Nradar— N
L(Hi) = [T £hy) TI Lho) I L(hoy), (6)
1>0,5>0:h;;€Hy, ithio€H JihojeH

where we have added to our notation the total number of ewergach group &, is the number of joint DF and radar
detections in hypothesis Npg is the total number of DF tracks, a4,/ iS the total number of radar tracks).



We define the null hypothesis to be that which contains no ®Fatlar associations, @v, = 0 (e.g., the four-target
hypothesis in Table 1). The likelihood of the null hypotlsesan be separated into two distinct groups representing the
DF-only detections and radar-only detections,

NDF Nradar
L(Ho) = [T L(hio) [T L(hoy). (7)
i=1 j=1
The likelihood ratio is defined to be £
LR(Hy) = L2y 8
(Hx) Z(Ho) (8)

Note that all of the terms it (#;,) that correspond to DF-only or radar-only events are alssgurein the null hypothesis.
After canceling common terms, all that remains in the numeers a product overV, association hypotheses. In the
denominator, we cancel all b, of the DF-only and radar-only hypotheses. Therefore, #tadiliood ratio reduces to a
product of Ny, terms,

d
LR(H.) = AL PéDF)(hij)Pga D (hi;) f (22, X lhij) 9
(H) - I (DF) (radaj) (raday) (DF) )
i>0,j>0hizerty PN (hio) (1= Py (hio)) P (hog) (1= Pp 7 (hog)) f(zilhio) f (X |ho;)
We define the likelihood ratio of the individual associatiypotheses as follows:
POP (hig)PS*™ (hij) £ (2i,X;|his) ii+0
LR(hiy) ={ T¥70 (o) Q-PE () PR (o) (1-PRT (o)) lhio) (Kslhos) & (10)
1 otherwise

This allows us to write the likelihood ratio of the hypothe®;, as a product of likelihood ratios for the individual associ-
ation hypotheses,
LR(Hi)= [ LR(hi). (12)
i,j:hijeHy
Finally, taking the negative log of the likelihood ratioiséies (1), allowing the formulation of a two-dimensionatigs-
ment problem.

We now return to the measurement density functit(z;, X;|h;; ), where agairh;; indicates the hypothesis that the
measurements; and X; belong to the same target. In previous works, the modehfpwas simply the filtered radar
track state. We will represent the filtered radar track dbgté;(t) and note that the tracking spacezof(t) is usually
different than the measurement spacexgft). With this model,f (z;, X ;|hi;) becomesf (z;|X;) f (X;|hi;), where the
rows oinj are the track state estimates propagated to the bearingiree@ant times;, and f (X;|h;;) is independent
of f(z;|hs;). Sincef(X,|h;;) appears in both the numerator and denominator of the ligetifratio, it cancels out.

For notational convenience, we define the cross-covariahtrack state estimates; (¢,.) andx;(t.), which are both
rows of Xij, to beP;;(¢-,t.). In general, the calculation of these terms requires chiefokkeeping. For example,
consider the covariance between two track state estimatgsiate timeg; andt¢.. Just before the update, at tinig the
track state estimates are related by a simple forward giojecheir covariance is

P(t;,t1) = ®P(t1,11), (12)
where® represents the dynamic model from timeto ¢,. After the update, at tims,, the estimates have covariance
P(t2,t1) = (I-KH(t2)) ®P(t1,11), (13)

whereK is the Kalman gain and(¢) is the Jacobian of the measurement function at timé&'hese terms become
increasingly complicated with more projections and upslatie the next section, we show certain circumstances where t
cross-covariance terms have little effect and can be ighaneSection 5, we present an alternative algorithm thatdsvo
these difficult calculations altogether.



Assuming a normal distribution, the density functiﬁ(zﬂf(ij) ~ N (z;;,%;;) is evaluated by estimating the bearing
measurements from the radar track staig-= h (X,]) The elements of cd#;; ) are approximated by

[Cov(iij))]r,c = h(tr)Pij(tmtc)hT(tc)a (14)

whereh(t) is the Jacobian of the one-dimensional bearing measurefmection, ~, at timet¢. The covariancel;; =
cov(z;; ) +R,;. combines the covariance of; with the bearing measurement covariariBe, The Mahalanobis (statistical)
distance from the DF measurement sequence to the estimededds is

dij = \/(Zz' - i) 2} (7 - %)), (15)

The measurement density is

2
L

\/ |27TE”| .
In previous works; ™ it was assumed that the track state estimates at differaestivere independent (i.B.;(t,,t.) = 0
for r # ¢). If this assumption is true, then the covariance maijxis diagonal, and the density function simplifies to

f(zilXy5) = (16)

faiXe) =TT o~ (zi(D)=2i5(£)% /207, (1)
Zj|Aj) = )
! tet; V 27T0'ij(t)

whereo;;(t) is the diagonal element @f;; associated with bearing measuremsift).

(17)

Itis important to emphasize that the densities in (16) aidl ¢brrespond to fusing a single DF measurement batch with
a single radar track, assuming; the calculation consists @¥; residual errors, one for each of the bearing measurements
in z;. The residual errors arrelatedbecause the filtered, predicted track state estimat€s), are correlated in time.

4. CORRELATED RESIDUALS

The residual errors in (17) may be considered independeheibff-diagonal terms oE;; are sufficiently small. The
critical parameters turn out to be the relative measurempdate rate and relative measurement accuracy between the
radar and DF sensor. For example, if we receive multiple DRsueements for every radar update, the propagated radar
track states are based on the same measurement informadi@aneshighly correlated. Even then, the correlation temig o
matter if the DF measurements are relatively accurate.rfemcurate DF measurements, the DF measurement covariance,
R, loads the diagonal At to the point where the off-diagonal terms become insignifica

A simulation was used to explore the parameter space betredstive measurement rate and relative measurement
accuracy. The results indicate when one is justified in igygothe correlation terms in the likelihood function—in othe
words, when one may use (17) instead of (16). The simulatiedl & bearing-only sensor and a range/bearing radar. The
initial range to the target was fixed, but the initial targefitling was varied over a number of Monte Carlo trials. An
extended Kalman Filter (EKF) with a nearly constant vepNCV) motion model was used to track the target using only
the radar measurements. The residual of each bearing reezesuirwas calculated based on the predicted radar traek stat
the bearing measurements were then grouped into batches ofdasurements, and the batch score was calculated to be
the sum of the individual measurement residuals.

A set of parameters was chosen to illustrate the effect ofdneelated radar track states. The DF sensor updates once
per second, the radar updates every ten seconds, and bstirséave a bearing measurement accuracy of one degree.
Figure 2 shows the cumulative probability of three différstatistics. First, we plot the Kalman Filter innovatiom the
radar tracker. Since the radar measurements are two-dionahsve expect this statistic to followy@ distribution with
two degrees of freedom (g distribution with N degrees of freedom is denotgd,). The statistic for the individual
bearing measurements is the Mahalanobis (statisticagrdis between the bearing measurement and the radar tadek st
at that time. Since these measurements are one-dimensianalould expect this statistic to follow g distribution if
the residuals were independent. The batch statistic isuhed ten individual bearing measurement residuals. Again
assuming independence, we would expect this statistidimfa 3, distribution.



08 e Exceeds _—
= RSP z Griteal
: : oL : ~ : - Value -
806  Beaing G~ L TN Y
o Measurement Co g : Y A
< Residuals: ~ / : : Y (V5
T 04f o SRR RN, Radar: - - fofrs e
2 _/~ Measurement / ‘Bearing
8 Innovations Measurement
0.2 e -+ Bateh -
0 -1 IO Il
10 10 10
2
X

Figure 2. This figure shows the cumulative probability of various statisTibe. radar measurement residual errors follows alistri-
bution as expected. If we assume independence, we expect the iradibielaring residuals to follow g2 distribution and the batch
statistic, which is the sum of ten individual bearing residuals, to fob@w however, both of these distributions fall outside the expected
bounds where marked, indicating that we should reject the indeperadgttial hypothesis.

The expected distributiongf, x3, andx?,) are indicated by a boundary at the critical value for a Kajorov-Smirnov
(KS) goodness-of-fit test (at the 5% significance level). Kigetest is used to determine whether the actual data could
have been generated by the expected probability distoibthe null hypothesis). The test checks the maximum distan
between the null hypothesis and the cumulative distrilputibthe data against a critical value. Data generated fram th
null hypothesis is expected to exceed the critical valug tiean some small percentage of the time (typically 5%), € on
may reject the null hypothesis if the critical value is exde

We see that the distribution of radar measurement innawafialls within the respective critical values, so we do not
reject the hypothesis that they are independent—exactly armexpects from a Kalman filter. On the other hand, both
the individual bearing measurement residuals and the Istatistic exceeds the critical value where indicated, soajest
the hypothesis of independent residual errors—in other syahe correlation terms are statistically significant amalsd
not be ignored.

We now explore the parameter space to see where the batidtistaxceeds the critical value by running a large
number of Monte Carlo trials. The radar update time (ten sgégpand accuracy (one degree) are held constant while
the corresponding DF parameters were varied. Figure 3 ipusgiparates this parameter space into two regions: above
the line, the residuals can be considered independentihibiline, correlation terms are statistically significafibese
results confirm our previous claim that correlated resislaaglcur when the DF measurement error is relatively small or
the DF measurement rate is relatively fast. In particutasgiems that we can consider the residuals to be indepengent a
time the DF measurement error is over five times the radaingpareasurement error or any time the DF measurement
rate is less than or equal to that of the radar. In Section Tyl/present results where the radar and DF sensor have equal
bearing error, and the DF sensor has twice the measurenemtfithe radar—these parameters fall squarely in the region
where correlated residuals are a factor, as indicated ifighee.

5. IMPROVED SCORE BASED ON KALMAN FILTER UPDATES

We have just seen the effect when the residual covaridicés not diagonal but has nonzero off-diagonal terms. Note
that one might consider smoothing the track state estimegietbe batch interval in an attempt to minimize the corietat
between any two track state estimates. For example, caraiflatch fit of the radar measurements to some dynamic
model. The covariance terms then become the covariance ofitlael fit transformed to measurement space; the result is
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Figure 3. A rough separation of the relative angle error and relatiasurement rate parameter space into regions where the residuals
can be considered independent (above the line) and where the tiorreexms are significant (below the line). The simulation in
Section 7 uses the parameters indicated by a square.

that all of the elements & will be more-or-less equal. The effect is to spread out thieetation over time, but it does not
reduce its impact. We conclude that it doesn’t particulargtter which smoothing technique is used, if any—what matter
is that the statistics of the residuals are properly addrkess

When we are not justified in simply ignoring the correlations but want to avoid the cross-covariance calculations
in (16), we need to use a different model fay. Instead of forming a track with just the radar measuremextssider
forming a track with both the DF and radar measurements. Whenpdate this track state with either a DF or radar
measurement, the innovations sequence is statisticadlyrceiated. We defing(t) to be either a DF or radar measurement
at time t,x(¢) to be the track state estimate just before the updigt) to be the corresponding track state covariance,
andX;;(t) = h(t)P;;(t)h"(t) + R(t); h(t) is the Jacobian of the measurement function Ri{d) is the measurement
covariance. We also definéj(t) = (z(t) - h(%()))" Xi;(t) (z(t) - h(x(t))). With these definitions, we can compute
the measurement density

Xh)= ] e (18)
Zj, Aj|lij) = T
Fle Xl te(einty) V127245 (1)
Because this result is recursive, it leads to an efficientémpntation. In the algorithm, we initiate a track for easha
ciation hypothesi#;;. Then as new DF and radar measurements arrive, we updatéhedtlack state and the cumulative
track score. These scores are used to form the assignmédahéproosts, and the assignment solutions are used to deter-
mine the unambiguous association hypotheses. Once we heade anfirm association decision, we simply forward the
corresponding tracks to the system operator. The remataintgtively associated tracks can also be made availakieto
operator with their association probabilities.

The following is a proof of the independence of the resideajugnce for a linear Kalman Filter. The concept is the
same for the nonlinear Extended Kalman Filter (EKF) althotig linearization step may make it somewhat suboptimal.

We are interested in the covariance between two residuaiseat updates andk + 1; the errors are
e = 2k — HpXppo1 (19)
et = 2pat — Hio1 ®ron (Repeor — Krer) - (20)
Since the errors have zero mean, the covariance is given by

Elersier] = B[ (zre1 — i1 ®ra1 (Rnpor - K (2 - HiXpgeo1))) (25 - &ZVHHZ)] : (21)



Eliminating independent terms with zero expected valueiced the expression to

Elepsier] = E[-Hy ®rir (Ki (Hk&k\k—lﬁ-}gquZ +2) - ﬁk\kqﬁzm_lHD] (22)
= ~Hjp1®p1 (Ki (HePrpp H, + Ry) - Py HY) (23)

If we substitute the Kalman gain,
-1
K = Py Hy (H Py H +Ry) (24)

into (23), we see that the covariance goes to zero.

6. ASSOCIATION AMBIGUITY

The association of DF measurements to radar tracks is dosehing a two-dimensional assignment problem. Mtfrt{
previously introduced an algorithm that finds multiple diyadolutions to the 2D assignment problem where each alter-
native solution represents a different complete data &ssot hypothesigH;. In the following, let{#,Ha,..., Hk}
denote a set of{ rankedsolutions to the assignment problem such tHatcorresponds to the “best” solution returned
from the assignment solvek; to the “second-best”, etc. (this approach is commonly ddilebest”). Ranking is done
by cost,

c(H1) <c(Ho) <...<c(Hk), (25)

where the costs;(H; ), are defined as negative log-likelihood ratios. As londsais sufficiently large, it is the case that

K
> P(Hi) ~ 1, (26)
k=0
and therefore P(HL)
P(Hy) & — . (27)
Yo P(Hi)
We can now use (27) to obtain
—c(Hr)
P(Hy) = —— (28)

L+ Yp ) ee(te)’
which gives the probability of a hypothesis in terms of itsteg?;,).> 16 Note that (25) implies
P(H1) 2 P(Hz)2...2 P(Hk). (29)

It may be necessary to “shift” the costs in (28) for numergtability:

—c(Hy)+a
‘ (30)

P =
(Hk) oo+ ZkK e—C(Hk)‘*'Oé’

where a possible choice for the cost shiftis c¢(#;).1°

The probabilities of the individual association hypottege(h;;), can be calculated by adding the probability of all
the hypothese®!;, that contairh;;,
P(hij)~ Y, P(Hz). (31)

Kihi; €My

The assignment probabilitie3(h,;) serve as a measure of thesociation uncertaintgr ambiguity If P(h,;) < 1,
then there is a non-zero probability that the associatiomfthe best hypothesi; is incorrect. In practice, we require
P(h;;) to exceed some threshold before making a firm associatideidecand we hold all other association decisions in
abeyance until the ambiguity is resolved.

Two types of ambiguity may occur. The first type of ambigugywihen one DF track associates with more than one
radar track. This type of ambiguity occurs when severaktgrghare a common line of bearing. In this case, we defer the
association decision until the ambiguity is resolved. Qmdther hand, it is possible that a previously resolved stena



again becomes ambiguous. In this case, we leave the firmiassnalecision in place unless there is also ambiguity é th
DF measurement-to-track associations or the radar meaesutdo-track associations. For example, as long as twar rad
tracks are separable in range and two DF tracks by theirfestit doesn’t matter if the bearing becomes ambiguous—the
previous track-to-track associations, made when the hgawere unambiguous, remains valid.

The second type of ambiguity occurs when more than one Dk &rssociates with a single radar track. For example, a
DF sensor may establish independent tracks on multipleensifirom the same target (or the same emitter simultangousl
operating in multiple modes), and we should associate ah stacks with a single target. This situation can be handled
by allowing multiple assignment in the assignment solver @iminating solutions with conflicting assignments. Amet
situation exists when two targets are at the same bearintpéuadar only detects one of them. This can occur in practice
because of the inherent range advantage of the passive Bérs#rthere is no conflict between the DF tracks, then there
is no way to distinguish this situation from the previous éndthe DF tracks belong to the same target) until the radar
establishes a track on the second target. This example aimphahe importance of continuing to monitor the ambiguity
in the scenario, even after a firm decision has been made.

7. SSIMULATION RESULTS

The simulation scenario has a radar and DF sensor on a sitadferm. There are two targets at different ranges but
approximately the same bearing. The radar updates evergetmnds and the DF sensor every five seconds with the
bearing measurements associated based on the targetrsrRieBoth the radar and DF sensor have one degree bearing
measurement errors. According to Figure 3, this set of patars produces correlated residuals unless the improved
association score is used.

In Figure 4, the plot on the left shows the true bearings ddalies) and bearing measurements (scattered dots), with
the two targets differentiated by color. The plot on the rigffows the probability of the correct association hypadthas
a function of time. The algorithm was run in two different nesd in the first mode (indicated by the set of black lines),
the association score was computed recursively over tliee exaenario; in the second mode (indicated by the set of gray
lines), the radar track was filtered through only the lastysbeconds of DF measurements. For both modes, the jagged
line indicates a single Monte Carlo trial, and the smooth Ifthe average over a large number of trials.

For the recursive mode, we see that on average the initiakceg®on probability is 70%, increases slightly, then
remains flat as the bearings cross; when the bearings sep@ain, the association probability increases again thtil
95% threshold is met at about 270 seconds. For the sixty delsatth mode, the initial association probability is the
same, 70%; however, as previous data is forgotten, the iatismgprobability now drops to 50% at the exact time that the
bearings cross. Once the targets separate, the asso@atlmability increases again until it crosses the threshblbout
320 seconds. We see that the recursive mode allows us to nfake association decision approximately fifty seconds
before the batch mode.

We also ran this scenario using the previous algorithm basddF-measurement-to-radar-track residuals without the
whitening effect of the Kalman filter updates. Using thisrecahe measured association probabilities were eitheri0% o
100% with very little in between. The effect of the correthtesiduals was to produce a measure of association ampiguit
that did not accurately represent the true ambiguity in temario.

8. CONCLUSION

We present a unique algorithm for the association of DF saakadar tracks that addresses the ambiguity in the asieocia
decision. The association problem is formulated as a twtedsional assignment where the potential associations are
scored using the likelihood ratio. The assignment problesolved, and thé best solutions are used to calculate the
probability that a particular association is correct. Wmpare this probability to a firm decision threshold.

Our approach improves on the previous work in three areast, ke described the previous approach to forming
an association score based on the residuals between the &tiraments and the filtered radar track states. We showed
that this score is difficult to compute unless the residugdsradependent. We noted that the residuals may be condidere
independent in certain scenarios where the DF measurerhawslittle impact on the radar track state because of the
relative data rate or measurement accuracy. In the gerasa) however, this assumption can lead to inaccurate aitybigu
assessments. We proposed an improved association scetedrathe normalized Kalman filter innovations of a track that
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Figure 4. Simulation results for a platform with DF and radar sensor trgdkia targets at nearly the same bearing. The left plot shows
the true bearings (solid lines) and DF measurements (scattered dotsyptkergets are differentiated by color. The right plot shows

the association probability as a function of time for two different modesa (§cursive association score (black lines) and (ii) a sixty

second batch (gray lines). Both cases show the result of a single Maritetéil and the average over a large number of trials. A firm

association decision is made when the probability crosses the indicateoidrétashed).

is updated with both DF and radar measurements. This scarbecaomputed recursively, as in the previous approach,
which allows the algorithm to consider an arbitrarily laiggch size. We showed that this score provides accuratisesu
in a scenario with significant ambiguity.

Second, our approach provides a direct assessment of thgutylthrough the individual association probabilities,
and our decision is based on a simple threshold. In previppsaches, the association score was mapped into different
decision regions that were both difficult to compute and diggo certain scenarios. In some cases, the decision boasda
were empirically determined to yield the desired error piulities. In this way, the desired performance was aclieve
despite the fact that the statistics of the discriminantfiom deviated from the assumed distribution. A result a th
that the decision boundaries were valid only for a particet of parameters—a testament to the many variations of this
approach found in the literature.

Third, we note that in previous approaches, each DF-torrastociation was considered independently of the others
which could lead to potentially conflicting assignmentstha assignment problem approach, we solve the problentyjoint
which allows conflict between multiple assignments to bereskked.
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