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ABSTRACT

Association and fusion of passive direction finding (DF) reports with active radar tracks from airborne targets is challenging
because of the low dimensionality of the common kinematic measurement space. Often, multi-target scenarios lead to
significant data association ambiguity. Classically, the approach to this problem is a simple hypothesis test wherein a
batch of DF sensor measurements is associated with either zero or one of the radar tracks; assignment of multiple DF
tracks to a single radar track is allowed without regard to compatibility, and this can lead to detrimental results. This
paper develops a new approach for managing the ambiguity. The problem is formulated as a two-dimensional assignment,
and any association ambiguity is determined from thek best solutions. Firm association decisions are made only when
the ambiguity is at an acceptable level. The ambiguity information is also available in real time as an output to the
system operator. An improved batch association score, relative to previous works, is formulated that addresses statistical
correlations between individual measurement-to-track residuals; this new score is a likelihood ratio generated from Kalman
Filter residuals. Where previous scoring methods lead to incorrect ambiguity assessments in certain scenarios, the new
approach yields accurate results. Because the score is recursive, the batch may be extended over an arbitrary number of
measurements, helping to manage association ambiguities over time. Simulation results are shown to demonstrate the
algorithm.
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1. INTRODUCTION

Modern intelligence, surveillance, and reconnaissance (ISR) systems involve a networked collection of sensors on multiple
platforms. The capabilities of these systems are enhanced through geographic diversity of the sensor platforms and the use
of multiple sensor modalities; however, the effectiveness of such systems depends on their ability to automatically fuse the
multi-sensor data into a common operational picture. The specific problem addressed in this paper is the fusion of passive
direction-finding (DF) reports with active radar tracks in a real-time ISR system. The association of DF data is especially
challenging due to the low dimensionality of the measurements and because association ambiguities can persist over a
significant amount of time. This paper develops a new approach for managing the ambiguity in the association problem.

Measurement-to-track association plays an important part in network-centric tracking systems and as a result has been
a topic of much research.1,2 Trunk and Wilson posed the DF-to-radar association problem as a multiple-hypothesis test.3

The algorithm assumes that the DF measurements have been associated together into measurement “batches” that presume
a single target. An association score is then calculated for each possible DF-batch-to-radar-track pair. The score is based
on the normalized residual errors between the angle-only measurements and the predicted radar track states. To handle
different numbers of DF measurements in the batches, the sum of residuals is converted into a cumulative probability of
obtaining at least the observed value overN measurements, assuming aχ2

N distribution (in this paper, we show that this
assumption is not always valid). The algorithm then makes an association decision based on the probability values. The
decision rules consist of three different probability thresholds and a required margin between the two best probabilities.
Together, these rules form five distinct decision regions—firm correlation, tentative correlation, tentative correlation with
some track (but cannot determine which), tentatively uncorrelated, and firmly uncorrelated. The thresholds were deter-
mined empirically via simulation to achieve desired error probabilities. Each DF track was considered independently with
the result that more than one DF track could be associated with any given radar track.



A significant drawback of this approach is that the decision thresholds depend on the target geometry. Trunk and
Wilson calculated the decision rules for a variety of two-target scenarios with different inter-target spacing; unfortunately,
their results do not generalize to all possible scenarios. As a result, others have adapted this basic approach by changing
the decision rules and thresholds based on different experimental techniques.4,5 Saha mapped Trunk and Wilson’s statistic
into a figure of merit (FOM) rather than a cumulative probability. This new discriminant was used to analytically evaluate
the probabilities of correct and false association for a given scenario6 (Saha’s score was based on the filtered DF track
states rather than the DF measurements). Wang, et al., introduced a new discriminant based on a fuzzy synthetic function
and derived a triple-threshold decision policy based on thestatistics of the discriminant.7

These previous works are variations of the same basic approach, and they share the following characteristics: (i) an
association score based on measurement-to-track or track-to-track residuals, (ii) a set of analytic or empirical decision rules
used to detect ambiguity, and (iii) independent association decisions for each of the DF tracks. In this paper, we introduce
a new algorithm that improves on the basic approach in each ofthese areas.

First, we note that when filtered or predicted track states—either DF or radar—are used to compute a residual error,
subsequent residuals will be statistically correlated. Wewill show that under certain conditions, the correlation between
residuals is significant and cannot be ignored. For track-to-track fusion, the correlation is due to common process noise
in the tracking filters. For this problem, Saha derived an expression for the steady-state cross-correlation matrix and
showed conditions where the performance of the fusion algorithm can be improved.8 For measurement-to-track fusion,
the correlated residuals are due to the correlation betweentrack state estimates over time. In this paper, we propose a new
likelihood ratio score for measurement-to-track fusion based on Kalman filter updates. The filter updates have the effect of
whitening the residual errors. We show how this new likelihood ratio score leads to significantly better ambiguity estimates
than the old approach.

The second problem deals with the sensitivity of the decision rules to the target geometry. Empirical methods for
calculating the decision rules are impractical in real time, so one must hope that the observed geometry resembles some
pre-computed scenario. Analytic methods can be applied; however, the decision rules are still difficult to compute in
complex multi-target scenarios. Rather than mapping the discriminant function into difficult-to-compute decision regions,
we instead pose the DF-to-radar fusion problem as a two-dimensional assignment. Given this problem formulation, a
number of techniques exist for measuring the ambiguity in the solution space.9–11 We use one such technique, based on the
k best solutions, to compute the probability that a particular assignment is correct. We make a firm association decision
when the probability of correct association exceeds a threshold.

Third, the assignment problem formulation allows us to consider the DF-to-radar associations jointly rather than in-
dependently. It is possible that more than one DF track originates from a single target; however, assigning the DF tracks
independently means that there is no way to deal withconflictbetween assignments. For example, we may know that two
different DF tracks correspond to radars that do not exist onthe same target platform. The assignment problem approach
lets us allow certain hypotheses but exclude others from consideration.

Our contribution is a new DF-to-radar fusion algorithm. We form a two-dimensional assignment problem using a new
likelihood ration score. The solution to the assignment problem provides the best possible matching between the DF tracks
and radar tracks; however, we use thek best solutions to calculate the probability that an assignment is correct. We then
compare that probability to a firm decision threshold.

The remainder of this paper is organized as follows. First, we provide an overview of the improved DF-to-radar fusion
algorithm. We then derive a likelihood ratio score based on residual errors. Next, we show how correlated residuals affect
the statistics of the discriminant function used in the baseline approach and elaborate on the conditions when this effect is
significant. We then propose a new score based on Kalman Filter updates that produce a sequence of independent residual
errors. Next, we describe thek-best algorithm for measuring the ambiguity in the assignment problem. We then provide
simulation results and conclude with a brief discussion.

2. DF-TO-RADAR ASSOCIATION ALGORITHM

The DF-to-radar fusion algorithm is illustrated in Figure 1. In this simple example there are two DF tracks indicated by
zi = [zi(ti1), ..., zi(tiNi

)]T, i ∈ (1,2), where each track is a collection ofNi bearing measurements sampled at times

ti. Three radar tracks are indicated byXj = [xj(tj1), ...,xj(tjMj
)]T, j ∈ (1,2,3), which represents a sequence ofMj
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Figure 1. A block diagram of the DF-to-radar fusion algorithm, illustrating asimple example.

multi-dimensional radar measurements at timestj . Each of the DF measurement batches,zi, and radar measurement
batches,Xj , are formed by the respective DF and radar trackers and are presumed to belong to a single target. We define
the association hypotheses,hij , to represent the assumption that DF trackzi and radar trackXj are the same target. In
the example, there are six different association hypotheses. The cost,c(hij), of each of these association hypotheses is
found by computing a negative log likelihood ratio (NLLR). At this point, we gate out (remove from further consideration)
any hij whose cost is greater than zero; in our example, only three possibilities remain. We then solve the assignment
problem and find two hypotheses,Hk, k ∈ (1,2), which are defined to be sets ofhij that assign every DF track to zero
or one radar track (in the figure, we have left off the “zero” assignments for clarity). We will show how the probability
of eachHk is derived from its total cost,c(Hk) = ∑i,j∶hij∈Hk

c(hij). We can then calculate the probability of eachhij

by summing the probabilities of theHk in which it appears,P (hij) = ∑k∶hij∈Hk
P (Hk). For example, the association

hypothesish23 appears in bothH1 andH2, so it has a probability of 100%;h11 andh12 each appear in one hypothesis
and have probabilities of 60% and 40%, respectively. Finally, we compareP (hij) to a firm decision threshold,γ. In this
example, onlyP (h23) exceeds the threshold because the other two associations are ambiguous. Note that this approach
allows firm association decisions between some pairs of tracks even if ambiguity exists elsewhere in the scenario.

For reasons of computational efficiency, gating is often done with one or more simple tests before the cost is calculated.
For example, one could simply compare the angle between the DF and radar track states and reject differences that fall
outside a fixed gate size. The cost acts as the final gate.

There is a tradeoff with respect to the size of the DF measurement batch. A large batch size includes more information
from the track history that may be needed to resolve ambiguities, but a short batch size allows the algorithm to react
quickly to certain events such as a single-sensor track swap. The use of the dimensionless likelihood ratio allows us to
have the best of both worlds. Because the likelihood ratio isdimensionless, comparing scores is valid even when the
batch sizes are different (in previous work,3,6 different sized batches were handled by converting the score to a cumulative
probability). As we will soon see, the likelihood ratio is calculated recursively, meaning that it is simply updated with
each new measurement. This means that there is no inherent computational cost associated with a large batch. We take
advantage of this as follows. With each new DF measurement, we update the likelihood score that was stored at the last
iteration. We also calculate a new score based on only the last Ni measurements. The better of the two scores is used in
the association algorithm and saved in memory for the next iteration. In this way, the batch size can be arbitrarily large,
but it is “reset” as the most recent history may demand.



3. LIKELIHOOD RATIO DERIVATION

In the previous section, we defined the hypothesisHk to be the set of DF-to-radar association hypotheses,hij , such that
each DF track is assigned to zero or one radar track. Even in a simple scenario, we must consider many different hypotheses.
For example, if both the DF sensor and radar detect two targets, then there are eight possible associations leading to the
seven different hypotheses shown in Table 1 (assuming single assignment). The association eventhi0 indicates that DF
tracki does not associate with any of the radar tracks, and the eventh0j indicates that radar trackj does not associate with
any of the DF tracks.

Associations h10 h20 h01 h02 h11 h12 h21 h22
H

yp
ot

he
se

s

4 Targets ✓ ✓ ✓ ✓
3 Targets ✓ ✓ ✓
3 Targets ✓ ✓ ✓
3 Targets ✓ ✓ ✓
3 Targets ✓ ✓ ✓
2 Targets ✓ ✓
2 Targets ✓ ✓

Table 1. Seven Hypotheses for the Two-Sensor, Two-Target Scenario

In order to form an assignment problem, the cost of eachHk must be the sum of the costs of the individual association
hypotheses,12,13

c(Hk) = ∑
i,j∶hij∈Hk

c(hij). (1)

One way to form such a cost is to use the negative log likelihood ratio,c(hij) = NLLR(hij). We derive the NLLR by
first defining the likelihood,L, of the following association hypotheses:

L(hij) = PN ⋅ P
(DF)
D (hij) ⋅ P (radar)

D (hij) ⋅ f(zi,Xj ∣hij) (2)

L(hi0) = PN ⋅ P
(DF)
D (hi0) ⋅ (1 − P

(radar)
D (hi0)) ⋅ f(zi∣hi0) (3)

L(h0j) = PN ⋅ (1 − P
(DF)
D (h0j)) ⋅ P (radar)

D (h0j) ⋅ f(Xj ∣h0j) (4)

In these expressions,PN is the probability of a new target,PD(hij) is the probability that the DF sensor or radar (as
indicated) detected the target presumed inhij , andf is the probability density function of the measurements given the
presumed target (explained later). It is important to emphasize that the probability of detection,PD(hij), for both the
DF and radar sensors, depends on the presumed target. For example, the radar cannot detect certain DF targets that are
beyond the radar’s detection range (due to the inherent range advantage of passive DF). On the other hand, the DF sensor
cannot detect a radar target unless the target’s radar is actively transmitting. Often, the information needed to calculate
these values is not known, so we make certain assumptions. Ifwe assume thatPD(hij) = PD for a particular sensor, then
these terms will cancel out in the likelihood ratio and can beignored.

With these definitions, we can compute the likelihood of any hypothesis,

L(Hk) = ∏
i,j∶hij∈Hk

L(hij). (5)

We can separate the individual association hypotheses inHk into three distinct groups representing joint DF and radar
detections, DF-only detections, and radar-only detections. The likelihood is then written

L(Hk) =
Nk∏

i>0,j>0∶hij∈Hk

L(hij)
NDF−Nk∏
i∶hi0∈Hk

L(hi0)
Nradar−Nk∏
j∶h0j∈Hk

L(h0j), (6)

where we have added to our notation the total number of eventsin each group (Nk is the number of joint DF and radar
detections in hypothesisk, NDF is the total number of DF tracks, andNradar is the total number of radar tracks).



We define the null hypothesis to be that which contains no DF-to-radar associations, orNk = 0 (e.g., the four-target
hypothesis in Table 1). The likelihood of the null hypothesis can be separated into two distinct groups representing the
DF-only detections and radar-only detections,

L(H0) =
NDF∏
i=1

L(hi0)
Nradar∏
j=1

L(h0j). (7)

The likelihood ratio is defined to be

LR(Hk) = L(Hk)
L(H0) . (8)

Note that all of the terms inL(Hk) that correspond to DF-only or radar-only events are also present in the null hypothesis.
After canceling common terms, all that remains in the numerator is a product overNk association hypotheses. In the
denominator, we cancel all butNk of the DF-only and radar-only hypotheses. Therefore, the likelihood ratio reduces to a
product ofNk terms,

LR(Hk) =
Nk∏

i>0,j>0∶hij∈Hk

P
(DF)
D (hij)P (radar)

D (hij)f(zi,Xj ∣hij)
PNP

(DF)
D (hi0)(1 − P

(radar)
D (hi0))P (radar)

D (h0j)(1 − P
(DF)
D (h0j))f(zi∣hi0)f(Xj ∣h0j)

. (9)

We define the likelihood ratio of the individual associationhypotheses as follows:

LR(hij) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P
(DF)
D
(hij)P

(radar)
D

(hij)f(zi,Xj ∣hij)

PN P
(DF)
D
(hi0)(1−P

(radar)
D

(hi0))P
(radar)
D

(h0j)(1−P
(DF)
D
(h0j))f(zi∣hi0)f(Xj ∣h0j)

i, j ≠ 0

1 otherwise

. (10)

This allows us to write the likelihood ratio of the hypothesisHk as a product of likelihood ratios for the individual associ-
ation hypotheses,

LR(Hk) = ∏
i,j∶hij∈Hk

LR(hij). (11)

Finally, taking the negative log of the likelihood ratio satisfies (1), allowing the formulation of a two-dimensional assign-
ment problem.

We now return to the measurement density function,f(zi,Xj ∣hij), where againhij indicates the hypothesis that the
measurementszi andXj belong to the same target. In previous works, the model forhij was simply the filtered radar
track state. We will represent the filtered radar track stateby x̂j(t) and note that the tracking space ofx̂j(t) is usually
different than the measurement space ofxj(t). With this model,f(zi,Xj ∣hij) becomesf(zi∣X̂ij)f(Xj ∣hij), where the
rows ofX̂ij are the track state estimates propagated to the bearing measurement timesti, andf(Xj ∣hij) is independent
of f(zi∣hij). Sincef(Xj ∣hij) appears in both the numerator and denominator of the likelihood ratio, it cancels out.

For notational convenience, we define the cross-covarianceof track state estimateŝxj(tr) andx̂j(tc), which are both
rows of X̂ij , to bePij(tr, tc). In general, the calculation of these terms requires careful bookkeeping. For example,
consider the covariance between two track state estimates at update timest1 andt2. Just before the update, at timet−

2
, the

track state estimates are related by a simple forward projection; their covariance is

P(t−
2
, t1) =ΦP(t1, t1), (12)

whereΦ represents the dynamic model from timet1 to t2. After the update, at timet2, the estimates have covariance

P(t2, t1) = (I −KH(t2))ΦP(t1, t1), (13)

whereK is the Kalman gain andH(t) is the Jacobian of the measurement function at timet. These terms become
increasingly complicated with more projections and updates. In the next section, we show certain circumstances where the
cross-covariance terms have little effect and can be ignored; in Section 5, we present an alternative algorithm that avoids
these difficult calculations altogether.



Assuming a normal distribution, the density functionf(zi∣X̂ij) ∼ N(ẑij ,Σij) is evaluated by estimating the bearing
measurements from the radar track state,ẑij = h (X̂ij). The elements of cov(ẑij) are approximated by

[cov(ẑij))]r,c = h(tr)Pij(tr, tc)hT(tc), (14)

whereh(t) is the Jacobian of the one-dimensional bearing measurementfunction, h, at timet. The covarianceΣij =

cov(ẑij)+Ri. combines the covariance ofẑij with the bearing measurement covariance,Ri. The Mahalanobis (statistical)
distance from the DF measurement sequence to the estimated bearings is

dij =

√
(zi − ẑij)T Σ−1ij (zi − ẑij). (15)

The measurement density is

f(zi∣X̂ij) = e−d
2

ij/2√∣2πΣij ∣ . (16)

In previous works,3–7 it was assumed that the track state estimates at different times were independent (i.e.Pij(tr, tc) = 0

for r ≠ c). If this assumption is true, then the covariance matrixΣij is diagonal, and the density function simplifies to

f(zi∣X̂ij) =∏
t∈ti

e−(zi(t)−ẑij(t))
2/2σ2

ij(t)√
2πσij(t) , (17)

whereσij(t) is the diagonal element ofΣij associated with bearing measurementzi(t).
It is important to emphasize that the densities in (16) and (17) correspond to fusing a single DF measurement batch with

a single radar track, assuminghij ; the calculation consists ofNi residual errors, one for each of the bearing measurements
in zi. The residual errors arecorrelatedbecause the filtered, predicted track state estimates,x̂j(t), are correlated in time.

4. CORRELATED RESIDUALS

The residual errors in (17) may be considered independent ifthe off-diagonal terms ofΣij are sufficiently small. The
critical parameters turn out to be the relative measurementupdate rate and relative measurement accuracy between the
radar and DF sensor. For example, if we receive multiple DF measurements for every radar update, the propagated radar
track states are based on the same measurement information and are highly correlated. Even then, the correlation terms only
matter if the DF measurements are relatively accurate. For inaccurate DF measurements, the DF measurement covariance,
R, loads the diagonal ofΣ to the point where the off-diagonal terms become insignificant.

A simulation was used to explore the parameter space betweenrelative measurement rate and relative measurement
accuracy. The results indicate when one is justified in ignoring the correlation terms in the likelihood function—in other
words, when one may use (17) instead of (16). The simulation used a bearing-only sensor and a range/bearing radar. The
initial range to the target was fixed, but the initial target heading was varied over a number of Monte Carlo trials. An
extended Kalman Filter (EKF) with a nearly constant velocity (NCV) motion model was used to track the target using only
the radar measurements. The residual of each bearing measurement was calculated based on the predicted radar track state;
the bearing measurements were then grouped into batches of ten measurements, and the batch score was calculated to be
the sum of the individual measurement residuals.

A set of parameters was chosen to illustrate the effect of thecorrelated radar track states. The DF sensor updates once
per second, the radar updates every ten seconds, and both sensors have a bearing measurement accuracy of one degree.
Figure 2 shows the cumulative probability of three different statistics. First, we plot the Kalman Filter innovation for the
radar tracker. Since the radar measurements are two-dimensional, we expect this statistic to follow aχ2 distribution with
two degrees of freedom (aχ2 distribution withN degrees of freedom is denotedχ2

N ). The statistic for the individual
bearing measurements is the Mahalanobis (statistical) distance between the bearing measurement and the radar track state
at that time. Since these measurements are one-dimensional, we would expect this statistic to follow aχ2

1
distribution if

the residuals were independent. The batch statistic is the sum of ten individual bearing measurement residuals. Again
assuming independence, we would expect this statistic to follow a χ2

10
distribution.
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1 distribution and the batch
statistic, which is the sum of ten individual bearing residuals, to followχ

2

10; however, both of these distributions fall outside the expected
bounds where marked, indicating that we should reject the independentresidual hypothesis.

The expected distributions (χ2

1
, χ2

2
, andχ2

10
) are indicated by a boundary at the critical value for a Kolmogorov-Smirnov

(KS) goodness-of-fit test (at the 5% significance level). TheKS test is used to determine whether the actual data could
have been generated by the expected probability distribution (the null hypothesis). The test checks the maximum distance
between the null hypothesis and the cumulative distribution of the data against a critical value. Data generated from the
null hypothesis is expected to exceed the critical value less than some small percentage of the time (typically 5%), so one
may reject the null hypothesis if the critical value is exceeded.

We see that the distribution of radar measurement innovations falls within the respective critical values, so we do not
reject the hypothesis that they are independent—exactly what one expects from a Kalman filter. On the other hand, both
the individual bearing measurement residuals and the batchstatistic exceeds the critical value where indicated, so wereject
the hypothesis of independent residual errors—in other words, the correlation terms are statistically significant and should
not be ignored.

We now explore the parameter space to see where the batch statistic exceeds the critical value by running a large
number of Monte Carlo trials. The radar update time (ten seconds) and accuracy (one degree) are held constant while
the corresponding DF parameters were varied. Figure 3 roughly separates this parameter space into two regions: above
the line, the residuals can be considered independent; below the line, correlation terms are statistically significant. These
results confirm our previous claim that correlated residuals occur when the DF measurement error is relatively small or
the DF measurement rate is relatively fast. In particular, is seems that we can consider the residuals to be independent any
time the DF measurement error is over five times the radar bearing measurement error or any time the DF measurement
rate is less than or equal to that of the radar. In Section 7, wewill present results where the radar and DF sensor have equal
bearing error, and the DF sensor has twice the measurement rate of the radar—these parameters fall squarely in the region
where correlated residuals are a factor, as indicated in thefigure.

5. IMPROVED SCORE BASED ON KALMAN FILTER UPDATES

We have just seen the effect when the residual covariance,Σ, is not diagonal but has nonzero off-diagonal terms. Note
that one might consider smoothing the track state estimate over the batch interval in an attempt to minimize the correlation
between any two track state estimates. For example, consider a batch fit of the radar measurements to some dynamic
model. The covariance terms then become the covariance of the model fit transformed to measurement space; the result is
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that all of the elements ofΣ will be more-or-less equal. The effect is to spread out the correlation over time, but it does not
reduce its impact. We conclude that it doesn’t particularlymatter which smoothing technique is used, if any—what matters
is that the statistics of the residuals are properly addressed.

When we are not justified in simply ignoring the correlation terms but want to avoid the cross-covariance calculations
in (16), we need to use a different model forhij . Instead of forming a track with just the radar measurements, consider
forming a track with both the DF and radar measurements. When we update this track state with either a DF or radar
measurement, the innovations sequence is statistically uncorrelated. We definez(t) to be either a DF or radar measurement
at time t,x̂(t) to be the track state estimate just before the update,Pij(t) to be the corresponding track state covariance,
andΣij(t) = h(t)Pij(t)hT(t) +R(t); h(t) is the Jacobian of the measurement function andR(t) is the measurement
covariance. We also defined2

ij(t) = (z(t) − h(x̂(t)))T Σij(t) (z(t) − h(x̂(t))). With these definitions, we can compute
the measurement density

f(zi,Xj ∣hij) = ∏
t∈(ti,tj)

e−d
2

ij(t)/2√∣2πΣij(t)∣ . (18)

Because this result is recursive, it leads to an efficient implementation. In the algorithm, we initiate a track for each asso-
ciation hypothesishij . Then as new DF and radar measurements arrive, we update boththe track state and the cumulative
track score. These scores are used to form the assignment problem costs, and the assignment solutions are used to deter-
mine the unambiguous association hypotheses. Once we have made a firm association decision, we simply forward the
corresponding tracks to the system operator. The remainingtentatively associated tracks can also be made available tothe
operator with their association probabilities.

The following is a proof of the independence of the residual sequence for a linear Kalman Filter. The concept is the
same for the nonlinear Extended Kalman Filter (EKF) although the linearization step may make it somewhat suboptimal.

We are interested in the covariance between two residual errors at updatesk andk + 1; the errors are

ek = zk −Hkx̂k∣k−1 (19)

ek+1 = zk+1 −Hk+1Φk+1 (x̂k∣k−1 −Kkek) . (20)

Since the errors have zero mean, the covariance is given by

E [ek+1ek] = E [(zk+1 −Hk+1Φk+1 (x̂k∣k−1 −Kk (zk −Hkx̂k∣k−1))) (zk − x̂
T
k∣k−1H

T
k)] . (21)



Eliminating independent terms with zero expected value reduces the expression to

E [ek+1ek] = E [−Hk+1Φk+1 (Kk (Hkx̂k∣k−1x̂
T
k∣k−1H

T
k + z2

k) − x̂k∣k−1x̂
T
k∣k−1H

T
k)] (22)

= −Hk+1Φk+1 (Kk (HkPk∣k−1H
T
k +Rk) −Pk∣k−1H

T
k) . (23)

If we substitute the Kalman gain,

Kk = Pk∣k−1Hk (HkPk∣k−1H
T
k +Rk)−1 , (24)

into (23), we see that the covariance goes to zero.

6. ASSOCIATION AMBIGUITY

The association of DF measurements to radar tracks is done bysolving a two-dimensional assignment problem. Murty14,15

previously introduced an algorithm that finds multiple quality solutions to the 2D assignment problem where each alter-
native solution represents a different complete data association hypothesisHk. In the following, let{H1,H2, . . . ,HK}
denote a set ofK rankedsolutions to the assignment problem such thatH1 corresponds to the “best” solution returned
from the assignment solver,H2 to the “second-best”, etc. (this approach is commonly called “k-best”). Ranking is done
by cost,

c(H1) ≤ c(H2) ≤ . . . ≤ c(HK), (25)

where the costs,c(Hk), are defined as negative log-likelihood ratios. As long asK is sufficiently large, it is the case that

K

∑
k=0

P (Hk) ≈ 1, (26)

and therefore

P (Hk) ≈ P (Hk)
∑K

k=0 P (Hk) . (27)

We can now use (27) to obtain

P (Hk) = e−c(Hk)

1 +∑K
k=1 e−c(Hk)

, (28)

which gives the probability of a hypothesis in terms of its cost c(Hk).1,16 Note that (25) implies

P (H1) ≥ P (H2) ≥ . . . ≥ P (HK). (29)

It may be necessary to “shift” the costs in (28) for numericalstability:

P (Hk) = e−c(Hk)+α

eα
+∑K

k e−c(Hk)+α
, (30)

where a possible choice for the cost shift isα = c(H1).16

The probabilities of the individual association hypotheses, P (hij), can be calculated by adding the probability of all
the hypothesesHk that containhij ,

P (hij) ≈ ∑
k∶hij∈Hk

P (Hk). (31)

The assignment probabilitiesP (hij) serve as a measure of theassociation uncertaintyor ambiguity. If P (hij) < 1,
then there is a non-zero probability that the association from the best hypothesisH1 is incorrect. In practice, we require
P (hij) to exceed some threshold before making a firm association decision, and we hold all other association decisions in
abeyance until the ambiguity is resolved.

Two types of ambiguity may occur. The first type of ambiguity is when one DF track associates with more than one
radar track. This type of ambiguity occurs when several targets share a common line of bearing. In this case, we defer the
association decision until the ambiguity is resolved. On the other hand, it is possible that a previously resolved scenario



again becomes ambiguous. In this case, we leave the firm association decision in place unless there is also ambiguity in the
DF measurement-to-track associations or the radar measurement-to-track associations. For example, as long as two radar
tracks are separable in range and two DF tracks by their features, it doesn’t matter if the bearing becomes ambiguous—the
previous track-to-track associations, made when the bearings were unambiguous, remains valid.

The second type of ambiguity occurs when more than one DF track associates with a single radar track. For example, a
DF sensor may establish independent tracks on multiple emitters from the same target (or the same emitter simultaneously
operating in multiple modes), and we should associate all such tracks with a single target. This situation can be handled
by allowing multiple assignment in the assignment solver and eliminating solutions with conflicting assignments. Another
situation exists when two targets are at the same bearing butthe radar only detects one of them. This can occur in practice
because of the inherent range advantage of the passive DF sensor. If there is no conflict between the DF tracks, then there
is no way to distinguish this situation from the previous (where the DF tracks belong to the same target) until the radar
establishes a track on the second target. This example emphasizes the importance of continuing to monitor the ambiguity
in the scenario, even after a firm decision has been made.

7. SIMULATION RESULTS

The simulation scenario has a radar and DF sensor on a single platform. There are two targets at different ranges but
approximately the same bearing. The radar updates every tenseconds and the DF sensor every five seconds with the
bearing measurements associated based on the target emitter’s RF. Both the radar and DF sensor have one degree bearing
measurement errors. According to Figure 3, this set of parameters produces correlated residuals unless the improved
association score is used.

In Figure 4, the plot on the left shows the true bearings (solid lines) and bearing measurements (scattered dots), with
the two targets differentiated by color. The plot on the right shows the probability of the correct association hypothesis as
a function of time. The algorithm was run in two different modes: in the first mode (indicated by the set of black lines),
the association score was computed recursively over the entire scenario; in the second mode (indicated by the set of gray
lines), the radar track was filtered through only the last sixty seconds of DF measurements. For both modes, the jagged
line indicates a single Monte Carlo trial, and the smooth line is the average over a large number of trials.

For the recursive mode, we see that on average the initial association probability is 70%, increases slightly, then
remains flat as the bearings cross; when the bearings separate again, the association probability increases again untilthe
95% threshold is met at about 270 seconds. For the sixty second batch mode, the initial association probability is the
same, 70%; however, as previous data is forgotten, the association probability now drops to 50% at the exact time that the
bearings cross. Once the targets separate, the associationprobability increases again until it crosses the thresholdat about
320 seconds. We see that the recursive mode allows us to make afirm association decision approximately fifty seconds
before the batch mode.

We also ran this scenario using the previous algorithm basedon DF-measurement-to-radar-track residuals without the
whitening effect of the Kalman filter updates. Using this score, the measured association probabilities were either 0% or
100% with very little in between. The effect of the correlated residuals was to produce a measure of association ambiguity
that did not accurately represent the true ambiguity in the scenario.

8. CONCLUSION

We present a unique algorithm for the association of DF tracks to radar tracks that addresses the ambiguity in the association
decision. The association problem is formulated as a two-dimensional assignment where the potential associations are
scored using the likelihood ratio. The assignment problem is solved, and thek best solutions are used to calculate the
probability that a particular association is correct. We compare this probability to a firm decision threshold.

Our approach improves on the previous work in three areas. First, we described the previous approach to forming
an association score based on the residuals between the DF measurements and the filtered radar track states. We showed
that this score is difficult to compute unless the residuals are independent. We noted that the residuals may be considered
independent in certain scenarios where the DF measurementshave little impact on the radar track state because of the
relative data rate or measurement accuracy. In the general case, however, this assumption can lead to inaccurate ambiguity
assessments. We proposed an improved association score based on the normalized Kalman filter innovations of a track that
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Figure 4. Simulation results for a platform with DF and radar sensor tracking two targets at nearly the same bearing. The left plot shows
the true bearings (solid lines) and DF measurements (scattered dots); thetwo targets are differentiated by color. The right plot shows
the association probability as a function of time for two different modes: (i)a recursive association score (black lines) and (ii) a sixty
second batch (gray lines). Both cases show the result of a single Monte Carlo trail and the average over a large number of trials. A firm
association decision is made when the probability crosses the indicated threshold (dashed).

is updated with both DF and radar measurements. This score can be computed recursively, as in the previous approach,
which allows the algorithm to consider an arbitrarily largebatch size. We showed that this score provides accurate results
in a scenario with significant ambiguity.

Second, our approach provides a direct assessment of the ambiguity through the individual association probabilities,
and our decision is based on a simple threshold. In previous approaches, the association score was mapped into different
decision regions that were both difficult to compute and specific to certain scenarios. In some cases, the decision boundaries
were empirically determined to yield the desired error probabilities. In this way, the desired performance was achieved
despite the fact that the statistics of the discriminant function deviated from the assumed distribution. A result of this is
that the decision boundaries were valid only for a particular set of parameters—a testament to the many variations of this
approach found in the literature.

Third, we note that in previous approaches, each DF-to-radar association was considered independently of the others
which could lead to potentially conflicting assignments. Inthe assignment problem approach, we solve the problem jointly
which allows conflict between multiple assignments to be addressed.
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