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ATHENA: A DATA-DRIVEN ANOMALY DETECTION AND SPACE
OBJECT CLASSIFICATION TOOL FOR SSA

Navraj Singh∗, Joshua T. Horwood†, Jeffrey M. Aristoff‡,
and Jeremy Murray-Krezan§

We present Athena, a data-driven system we have developed for space object
anomaly detection and classification. Although our algorithmic framework is de-
signed for processing multiple data types, Athena v1.0 focuses primarily on ex-
ploiting non-resolved photometric data (light-curves) obtained from optical sen-
sors. The main techniques developed can be viewed as components of a machine
learning pipeline, and include (i) feature extraction using ideas inspired by com-
pressed sensing, (ii) unsupervised learning (via robust principal component anal-
ysis) for anomaly detection, (iii) supervised learning for object classification, and
(iv) a unifying database that enables all of the above. This paper describes the
Athena system components and demonstrates some of its use cases on both real
and simulated photometric data.

INTRODUCTION

The characterization, classification, and identification of near-Earth objects, in multiple regimes
of space, is a critical requirement for maintaining space situational awareness (SSA). A related but
equally important goal is the development of anomaly detection and identification, and change de-
tection capabilities. Such tasks are critical for supporting the current and future needs of the SSA
mission, including the maintenance of a growing catalog of resident space object (RSO) characteri-
zations and classifications, and for providing indications and warnings (I&W) and facilitating threat
identification and notification (TIN). These are important goals for maintaining space superiority
and control, both from a military and a commercial viewpoint. However, with the ever-growing
number of observable objects in space, the problem of detecting, tracking, and cataloging the type
and capabilities for each RSO, as well as detecting and identifying anomalies, is becoming increas-
ingly challenging.

Purely kinematic (astrometric) data, while sufficient for tasks such as orbit maintenance, is gen-
erally insufficient for higher-level SSA functions such as object classification and anomaly detec-
tion/identification. As a result, the analysis of raw images obtained from electro-optical sensors has
received much attention in recent years within the SSA community. However, space objects are of-
ten difficult to resolve in such images, even with the newest sensors, due to their small relative sizes
(especially in deep-space regimes). Fortunately, photometric signatures (i.e., an object’s brightness
or apparent visual magnitude variation over time, also called a “light curve”) have emerged as a
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very promising data type extracted from such non-resolved images.1, 2 With new sensors such as the
space surveillance telescope (SST) and the space-based space surveillance (SBSS) system already
online within the space surveillance network (SSN), and other commercial data sources as well
as amateur data sources coming online (e.g., via DARPA’s OrbitOutlook program), photometric
data collections on near-Earth objects are expected to increase.3 As a result, advanced algorithms
are needed for processing large amounts of light-curve data in support of the aforementioned SSA
functions, but this is a difficult task. For example, an Earth-orbiting object’s photometric signature
is a function of several factors, including its kinematic state, attitude, material composition, size
and shape, stability, illumination geometry, atmospheric effects, biases, and sensor characteristics.4

While the inverse problem of solving for one or more of these factors, given a real photometric
signature, can be mathematically formulated, it has proven far more difficult to treat using purely
theoretical physics-based models, especially for noisy and sparsely sampled photometric data, due
to the following: (i) the challenges in developing physically-realistic models without incorporat-
ing hundreds or even thousands of parameters to be estimated, (ii) the limited observability of said
parameters in realistic models given sparse data, and (iii) the computational effort required to fit
highly-parameterized and complex physical models.5, 6

With the goal of overcoming these challenges, Numerica has developed Athena, a data-driven
system using modern machine learning methods on sparse feature representations of photometric
data, in order to facilitate high-level I&W by providing anomaly detection, change detection, and
object classification reports. The goal of Athena v1.0 is to provide an end-to-end machine learning-
based I&W capability using a variety of historical and real-time photometric data sources.7 Im-
portantly, Athena does not rely on a particular set of theoretical generative models of photometric
data, but instead focuses on learning the observable physics for different classes of space objects (as
well as for specific space objects) from the data itself, by exploiting historical data collections in-
telligently and rigorously. The knowledge gained by applying the learning algorithms on historical
data ultimately enables real-time I&W capabilities on previously unseen data on both known and
unknown space objects. For example, for anomaly detection and identification, Athena learns the
“normal” behavior (in its feature space) of specific objects of interest or broader object classes, and
then detects departure from normality, given new data. For object classification, Athena learns the
feature behavior patterns of different object classes from historical data. The learned features and
classifiers ultimately lead to classification of unknown objects based on new data.

To accomplish these objectives, Athena provides (i) feature extraction algorithms based on com-
pressed sensing8 for extracting sparse representations of photometric data, (ii) unsupervised learn-
ing algorithms9, 10 based on robust principal component analysis for anomaly/change detection, (iii)
supervised learning algorithms for object classification based on the sparse feature representations,
and (iv) a unifying database that enables the above algorithms. This paper describes the Athena data
flow pipeline, software architecture, the Athena database, and supporting algorithmic components,
as well as demonstrates the system’s distinguishing features and benefits with specific use case
results on both simulated and real data. Results are presented on feature extraction using real photo-
metric data, and on anomaly detection as well as object classification using high-fidelity simulated
photometric data obtained via AFRL’s Ananke simulation software.

PROBLEM STATEMENT AND GOALS

Before describing the Athena system components, we first provide the reader a better understand-
ing of the types of problems we aim to tackle with the system, by way of example use cases. Toward
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Use Case 1: Detect Anomalies in Data on Known Object

Goal: Detect anomalies in photometric signatures of a known
space object, using real-time photometric collections from one or
more EO sensors, for threat identification and notification (TIN)

Primary Actor: Operator/Analyst

Pre-Condition: Athena has an established and tested connection
with the data source(s) and operator console

Trigger: Athena receives a newly collected photometric signature
on a known space object

Main Success Scenario (Story):
1. Athena receives a new photometric signature on a known

space object
2. Athena retrieves historically collected photometric signatures

of the same object, or similar objects, in Athena database
3. Athena determines if the new photometric signature is anoma-

lous in some way with respect to the retrieved historical pho-
tometric signatures

4. Athena compiles and returns an analysis report to the oper-
ator consisting of the following: (i) description on the de-
tected anomalies, (ii) a measure of confidence in any detected
anomalies, (iii) auxiliary information to aid operator/analyst
in determining source(s) of anomaly

5. Operator/analyst receives the report and takes necessary
course of action to resolve the anomaly

Use Case 2: Classify an Unknown Object

Goal: Classify an unknown space object, based on its photomet-
ric signature, as debris/fragment, rocket-body, or active payload
Primary Actor: Operator/Analyst

Pre-Condition: Athena has historical (offline) labeled photomet-
ric data belonging to object classes in its pre-defined taxonomy,
and Athena has an established and tested connection with the data
sources and operator console

Trigger: Athena receives a newly collected photometric signature
on an unknown space object

Main Success Scenario (Story):
1. Athena receives a new photometric signature on an unknown

space object
2. Athena notifies the operator/analyst of the data collection
3. Operator/analyst request Athena to classify this new photo-

metric signature as debris/fragment, rocket-body, or active
payload

4. Athena compiles and returns an analysis report to the operator
consisting of the following: (i) the determined object class,
(ii) a measure of confidence in the classification decision, (iii)
information on what subsets of its historical offline database
are similar to the newly collected data, and (iv) auxiliary in-
formation to aid operator/analyst in understanding the classi-
fication decision

(a) Use Case 1: Anomaly Detection on Known Objects (b) Use Case 2: Classify an Unknown Object

Figure 1. Example Use Cases of Athena

that end, Figure 1 specifies two example use cases of Athena. The first use case describes a sce-
nario where an analyst uses the system to determine if a newly collected photometric signature on a
known RSO is anomalous in some way with respect to historically collected signatures on the same
object. The second use case describes a scenario where a new photometric signature data collection
on an unknown object is used to classify the object into a pre-defined taxonomy of object classes.
We note that several variations of these use cases are possible with Athena. However, in this paper
we focus on presenting results on these two use cases.

ATHENA SYSTEM ARCHITECTURE

We now describe our system architecture that aims to fulfill use cases such as the ones described
above. The architecture, shown in Figure 2, can be viewed as a machine learning pipeline. The
blocks are divided into two main components: learning and generalization. The former contains
blocks relevant for the training phase of algorithm development, and the latter contains blocks rel-
evant for applying the learned classifiers and anomaly detectors to newly acquired real-time photo-
metric signatures. The training data consists of real photometric signatures (light curves) and their
feature representations available in a tagged (labeled) RSO observations database, and (option-
ally) high-fidelity simulated photometric signatures. For the latter, Numerica has leveraged AFRL’s
Ananke Simulation Software, for which Numerica has served as the software integrator in the past.
The Athena database is a critical component in the pipeline, and details on it are provided in the
next section.

The output of the training phase is a set of learned anomaly detectors, as well as classifiers for
object classification. The learned classifiers and unsupervised anomaly detectors then act on newly-
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Figure 2. Athena System Architecture

acquired real-time photometric signatures to provide space object characterization and classifica-
tion outputs, and anomaly/change detections (as I&W outputs). The compiled output reports are
then envisioned to automatically update feature-augmented object catalogs, and sent to an analyst
dashboard. In this paper, we first describe the Athena database, our feature extraction algorithm,
an unsupervised anomaly detection algorithm, and object classification framework. We follow the
technical discussions with results on feature extraction, anomaly detection, and object classification.

ATHENA DATABASE

To facilitate our data-driven approach, we have developed a database, called the Athena database,
that facilitates the formation of training, cross-validation, and testing datasets by bringing together
data from a variety of sources. The photometric signature datasets that we identified as relevant
for the anomaly detection and object classification components of Athena consist of a database of
labeled, or tagged, “light curves” as a function of time or solar phase angle. For the purpose of object
classification, the labels are be assumed to contain, in addition to object ID, an object class and/or
status identifier (such as active/inactive, whether the object is a known piece of debris, a rocket
body, its operating mode, etc.). For cataloged objects, such status information can be obtained from
external sources, such as the European Space Agency’s (ESA) Classification of Geosynchronous
Objects.11 Such a database serves the training, cross validation, and testing phases of algorithm
development. Currently, the Athena v1.0 database contains the following historical data sources:
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(i) private or closely-held data sources providing raw observations (photometric data), (ii) public
data sources providing frequently updated satellite catalog information (such as TLE ephemerides),
and (iii) public data sources containing static (occasionally updated) known space object catalog
metadata (such as satellite country of origin, launch date, object type, mission, etc).

The database systems used in the Athena DB are SQLite and MongoDB. The SQLite database
is used for the raw data and enforces a schema. However, the MongoDB database allows a flexible
data model that allows the storage of more composite entities, such as entire light curves. The pri-
mary benefit of forming such a database is that disparate data sources such as those mentioned above
are brought together in a unified, queryable location. For example, combining data from different
sources allows queries such as the following: “Retrieve all historical light curves from sensor ABQ1
on all objects classified as 3-axis stabilized which were launched between 1975 and 1990 by XYZ
company”, or “Retrieve all available historical light curves on objects that are classified as being
in ‘drift mode’.” Thus, the Athena algorithms benefit from several advantages of such a database:
(i) ability to cross reference different data sources to form queries not possible using a single data
source alone; (ii) ability to easily explore and visualize historical data collections; and (iii) ability
to form labeled/unlabeled training datasets, a prerequisite for our machine learning algorithms.

Online (Live, Real-Time) vs. Offline (Historical) Data Sources The Athena Database ingests
two types of data sources: (i) online, or live and real-time (or near real-time) sources; and (ii) offline
or historical data collections. Indeed, Athena’s data-driven approach relies heavily on historical data
collections in the background learning processes. The offline data sources consist of historically
collected data, available in “batch mode”. Such datasets serve in formation of training and cross-
validation datasets for the learning algorithms in Athena. The online data sources consist of new
data, available in real-time or near real-time. Usually, the online data would be the data plugged
into Athena in an operational system or a test-bed, and would be the data that Athena would be used
to analyze in most cases (although, Athena could just as well be used to perform analyses on subsets
of the historical data as well). While analyzing online data, Athena still uses its offline database in
the background learning processes, in order to make inferences on the online data streams.

FEATURE EXTRACTION ALGORITHMS

We now discuss the sparse feature extraction component of Athena. Within the machine learning
context and, in particular, in the context of processing photometric data, we will use the term feature
to refer to any quantity derived from the raw photometric signature, including the raw photometric
signature itself. The analysis of light curve data from both ground-based and space-based telescopes
presents many challenges. In particular, each light curve is a complex amalgamation of numerous
affects, including the design of the spacecraft of interest (e.g., the number of solar panels), the
spacecraft orientation, and position of the spacecraft relative to the Earth and Sun. Moreover, real
data is noisy and often sparse. Accordingly, as we will discuss herein, advanced techniques are
required to extract features from such data. Extracting and selecting the right set of features (i.e.,
the set of features that is best able to discriminate between different types of photometric signatures
obtained from different classes of space objects, and are best able to reveal anomalies) are critical
in developing space object characterization, classification, and anomaly detection algorithms.

To make our exposition precise let us begin by defining some notation. An individual light curve
will be represented by a column vector y ∈ Rn×1 and collection of m light curves encoded as the
columns of a matrix will be represented by Y ∈ Rn×m. For feature extraction, we reserve the letter
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D ∈ Rn×p to be a matrix where each of the p columns is a basis function that we use to represent
y. Such a matrix D will often be called a dictionary. A collection of coefficients that represents y
in a dictionary D will be denoted x ∈ Rp×1. Accordingly, in the simplest case, we will have that
Dx = y.

Thus, the collection of all features describing an object can be represented as a vector x ∈ Rp,
which we will refer to as a feature vector. By feature extraction, we mean the task of computing
such a feature vector from the raw photometric signature data. Although the raw signature itself
can be considered a feature vector (in which case D = I , the identity matrix), for the learning algo-
rithms to work well, more informative and compact features will be required. Said another way, we
seek physics-based sparse feature representations, by which we mean a representation of a raw pho-
tometric signature in a transform domain (defined by D) in which only a few coefficients describe
the raw data well. These few coefficients in turn describe the important aspects of signatures. These
representations are in turn key in the tasks of characterization and classification of space objects,
as well as in revealing anomalies that may be difficult to detect from the raw data alone. A critical
component of the Athena pipeline is the feature extraction component that automatically extracts
sparse feature representations in a mixture of transform domains.

Sparse Feature Extraction Using Overcomplete Dictionaries Photometric signatures are known
to have embedded in them local characteristics dependent on aspects such as RSO stability state,
material composition, orientation, etc. Capturing these features is often difficult due to issues such
as noise in the data and insufficient samples. In this section, we describe some techniques to tackle
the feature extraction challenges. The methods that we use are based upon recent work in transform
domain representation using `1 techniques,12 sometimes referred to as basis pursuit, and closely
related fields such as compressed sensing.13, 12, 14 Such techniques are an active area of current re-
search15, 16, 17, 18 (and references therein) and revolve around sparse representations of data. Our
algorithms are focused on using multiple overcomplete dictionaries of basis functions for repre-
senting photometric data. How does one extract local informative features in a light curve? The
underlying principle is that different dictionaries can be chosen that have affinity for particular
types of features. As the dictionaries compete to see which provides the “best” representation of the
data (i.e., representations that uses the fewest coefficients), those dictionaries that are the “winners”
illuminate which features are present. Developing precise definitions of “best” and “winner” basis
functions that capture photometric signature characteristics of interest is a key component of our
work. If one can find a representation that uses a sparse collection of coefficients across multiple
dictionaries, which fits the data well, then that representation provides strong statistical evidence of
underlying structure in the light curve.

While various components of the discussion above are known in the existing compressed sens-
ing literature, Numerica’s particular techniques provide several novel features, such as treatment of
pointwise noise constraints, not found in other methods, that facilitate robust photometric feature
extraction from noisy and corrupted data. We describe our specific optimization problem formula-
tion below. While naive searches for sparse representations are computationally very expensive (in
fact they are NP-hard), modern techniques exist for solving such problems very efficiently. Building
upon the fundamentally important work in Refs. [15, 16, 17, 18] which transforms the NP-hard `1
optimization problem into a convex `1 problem, Numerica has made many recent improvements
that reduce the required runtime of standard interior point methods19 by several orders of magni-
tude, allowing many dictionaries (and therefore many feature classes) to be detected across large
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data sets.

One of our key innovations is the development of algorithms that take advantage of pointwise
error bounds in a computationally efficient manner while guaranteeing that no error bound is ever
violated, thus allowing us to process noisy data where the noise can be time or sensor dependent.
Our formulation also allows us to handle missing data and corrupted data to some extent. We now
provide some more details on our optimization problem formulation for extracting sparse feature
representations.

Basis Pursuit and Compressed Sensing with Point-Wise Error Constraints The two closely
related topics of compressed sensing12 and basis pursuit15 have been active areas of research over the
past several years. To place the current work in context, we provide a brief overview here. Consider
a photometric signal vector y ∈ Rm. Basis pursuit revolves around the sparse representation of the
vector y using a collection of dictionaries D. Specifically, given a matrix D ∈ Rm×p, with p > m,
it is of interest to find an x ∈ Rp such that Dx = y. Again, there are many such solutions x and the
principle is again to choose the solution which is the sparsest. Note that while x is high dimensional,
if D is chosen “wisely”, then there exists a solution x that has very few non-zero entries.

Such a basis pursuit algorithm has several advantages. First, the collection of dictionaries D can
be chosen to represent different light curve features of interest. Second, point-wise error constraints
are straightforward to guarantee. The point-wise error constraints are important as they help prevent
the sparse solution of interest from being contaminated by noise from the sensor. In other words,
they bound the size of the perturbations that will be considered meaningful for feature extraction.

Of course, basis pursuit methods require modification for the current context. In particular, classic
basis pursuit methods can be computationally expensive. Fortunately, Numerica, as well as many
others,20 have performed substantial work in the area of efficient basis pursuit algorithms, and one
of the capabilities that Numerica has developed for the current work is a novel scheme for point-
wise constrained basis pursuit problems. In the language of constrained optimization, basis pursuit
for a raw 1-D signature/signal y with a dictionary D can be written as the following problem:

minimize
x

‖x‖0
subject to Dx = y,

(1)

Unfortunately, the problem in (1) is NP-hard, and is not computationally tractable, except for small
problems. One of the key insights in Ref. [13] is that (1) can be relaxed to a convex problem as

minimize
x

‖x‖1
subject to Dx = y,

(2)

where ‖·‖1 is the `1 norm (i.e., the sum of the absolute values of the entries of of the vector). The
idea is that, under constraints on the sparsity of x and mild constraints on the form of A (A is
required to satisfy a condition such as a restricted isometry principle13), the solutions to (1) and
(2) are the same. Also, since (2) is convex, the problem can quickly and optimally be solved using
convex optimization techniques.21

The key idea of (1) and (2) is that, among the infinitely many possible representations of y using
columns from D, there is a distinguished representation for which x happens to be sparse. Such
a parsimonious representation is indicative of the underlying structure of the light curve y. Ac-
cordingly, the idea of feature extraction using these techniques is to place into D columns which
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represent features of interest. Classically, if too many columns were added to D then one would
be in danger of over-fitting the light curve, and masking the true structure of the data. On the
other hand, the `1 regularization prevents over-fitting and emphasizes parsimonious explanations
for the observed light curve, encoded in the coefficient vector x. Such sparse sets of features, based
upon carefully chosen basis functions, forms the basis of our downstream spacecraft assessment and
identification algorithms.

In practice, however, the signal y can be noisy. Thus, we may not want to impose the constraint
Dx = y exactly. In this case, the following statistical variation, also known as the LASSO, can be
solved:

minimize
x

‖x‖1
subject to ‖Dx− y‖2 ≤ ε,

(3)

While (2) and (3) are quite classic, Numerica has developed techniques for making feature detection
in light curves robust to time-varying noise. In particular, we have leveraged techniques that control
noise on a point-wise basis. Such considerations lead to the following problem:

minimize
x

‖x‖1
subject to |Dx− y| � ε

(4)

where |·| is the point-wise absolute value of a vector, � is the point-wise less-than-or-equal-to op-
erator for two vectors, and ε is a vector of point-wise constraints. How can such an ε be used in
practice? There are many important applications. For example, a large entry in the vector ε can
be used to indicate missing data. In a similar vein, small entries in ε can be used to indicate areas
which the user believes is especially important for proper spacecraft identification. Problem (4) can
be solved by recasting it as a linear programming problem, but even using advanced interior point
techniques such a problem can be very difficult to solve. However, Numerica has developed a fast
solver using techniques such as Bregman iterations and ADMM, which solves problem (4), and thus
one that allows one to quickly and simultaneously extract photometric data features in the presence
of time varying noise.

Designing an Overcomplete Dictionary with Multiple Bases Having defined our optimization
problem for feature extraction in (4), our major task is to design the dictionary D in the problem
formulation. If the dictionary contains a mixture of bases, then the matrix D will be ‘fat’ and can
be referred to as ‘overcomplete’. Indeed, to find a sparse and efficient representation x, we would
want an overcomplete dictionary. A pictorial representation is shown in Figure 3.

Readers familiar with compressed sensing might wonder if signal recovery guarantees hold in the
case of dictionaries that are redundant (perhaps even highly so) and overcomplete. Indeed, the orig-
inal compressed sensing guarantees were proved only for orthonormal and incoherent dictionaries.
However, it turns out that an overcomplete and highly redundant definition of D can also satisfy
properties needed for compressed sensing guarantees for accurate signal recovery to hold. We will
skip the details as they are out of scope of this paper, and refer the reader to Ref. [8].

UNSUPERVISED LEARNING ALGORITHMS FOR ANOMALY DETECTION

In this section, we briefly discuss the unsupervised anomaly detection component of Athena. In
the present context, suppose we are given a large pool of photometric signatures, appropriately cal-
ibrated and normalized, collected by one or more optical sensors. Can we determine if there is a
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Figure 3. Illustration of Basis Pursuit for Sparse Feature Extraction

subset of light curves that is in some sense different, or “anomalous”, when compared to the rest? If
so, can we determine this subset, even if we do not know a priori what an anomalous signature looks
like? Notice that this is an unsupervised learning problem, since we are not told what normal or
anomalous behavior looks like. We do not attempt to match an a priori template to any light curve,
but instead allow the pattern to reveal itself in the data by way of dependence or independence of
observed photometric data. We define an anomaly as an abnormal or unexpected temporal depen-
dence in the photometric signature data collected at one or more sensors. Importantly, our definition
of normal and anomalous arises naturally from the data, and is not externally imposed. An impor-
tant benefit of such an approach is that an adversary cannot gain any advantage by foreknowledge
of earmarked pattern templates.

Although the problem is complex and challenging, Numerica has leveraged recent advances in `1
techniques for robust matrix completion, compressed sensing, robust principal component analysis,
and simple model discovery, to provide a mathematical foundation to this problem. In addition,
Numerica’s approach takes into account uncertainty in the measurements on which the inferences
are based. The details are discussed in Ref. [10], and we only present a brief overview here. A
common theme to all these areas is recovery of low-rank and sparse structures from surprisingly
few and noisy measurements.

We formulate the problem by assuming that the extracted feature vectors of all photometric sig-
natures from historical collections on a particular object are represented as a matrix Y ∈ Rm×n, the
rows of which each represent a feature representation of light curves. Each of the m feature vectors
is of length n extracted from a signature collected by an optical sensor (this can be achieved after
appropriate feature extraction, as we have already discussed). Thus, Y represents a collection of m
events, where each event is a single light-curve data collection. We then analyze Y using a latent
signal model and examine the normalized cross correlation matrix M = Y Y T ∈ Rm×m, which is
a correlation matrix of the data collection events. We base our calculations on a latent signal model
which includes low rank (L) and sparse (S) components. In this way, we simultaneously discern
the low-dimensional structure of the underlying background behavior (the low-rank part), as well
as the few anomalous data entries that depart from the nominal description (the sparse part). The
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optimization problem we solve for extracting the low-rank and sparse components is

minimize
L,S

‖L‖∗ + λ‖S‖1
subject to |PΩ(M)− PΩ(L+ S)| � ε,

(5)

where ‖·‖∗ is the nuclear norm, ‖·‖1 is the sum of the absolute values of the entries of the matrix,
PΩ is the projection operator of M onto the index matrix Ω (i.e., Mij is observed when Ωij = 1
and is not observed when Ωij = 0), and ε is a given constant matrix of bounds on the magnitudes
of the entry-wise error. Thus, our formulation allows to deal with partially observed data, and
also allows us to ascribe different error tolerances to different sensors. Henceforth, we refer to
this optimization problem as the point-wise error constrained robust principal component analysis
problem (or, in short, the eRPCA problem). Athena includes a fast solver for solving eRPCA,
and example applications of this approach to anomaly detection in simulated photometric data are
described in the Results section below.

SUPERVISED LEARNING ALGORITHMS FOR OBJECT CLASSIFICATION

In this section, we present some details on the supervised learning component of Athena. In the
context of supervised learning, we assume the availability of a training dataset, consisting of a set
of m training examples, {(x(i), y(i))}mi=1. The superscript “(i)” is an index into the training set.
Let X denote the space of input or feature vectors (also called the feature space) obtained using
the feature extraction techniques described above, and Y denote the output space. In supervised
learning, given such a labeled training set (i.e., data in which we are given the output y associated
with the input feature vector x), our goal is to learn a function h : X → Y , such that h(x)
is a good predictor for y. The Athena database is critical in enabling the construction of such
training datasets. The function h is called a hypothesis, chosen by the learning algorithm from a
set H of candidate hypotheses. A learning problem is called a classification problem if y can take
on values only in a finite categorical set. For example, suppose for a space object classification
problem setup, y takes on values in the set {DEBRIS, ACTIVE}. Further suppose we have a two-
dimensional feature representation of the data collections, perhaps computed using a sparse feature
representation framework such as ours. A hypothetical distribution of the training examples in this
feature space is shown in Figure 4. The goal of a classification algorithm would be to arrive at an
optimal decision boundary that separates the two classes. In this example, there are many possible
decision boundaries, and different classification algorithms will arrive at different solutions.

Some examples of supervised machine learning-based classification algorithms include logistic
regression (and its multi-class version, softmax regression), linear/Gaussian discriminant analysis,
flexible discriminant analysis, k-nearest neighbors, neural networks, naive Bayes, decision trees and
random forests, and support vector machines (SVM).

RESULTS

We now present some results that demonstrate the Athena pipeline. We first provide an example
result of our feature extraction algorithm using a sample of real photometric data. Next, we provide
some anomaly detection results using high-fidelity simulated data. Finally, we provide a result
that demonstrates the object classification use case. We note that although we have processed and
demonstrated anomaly detection in real photometric data via the Athena pipeline, for the purposes
of this paper we focus on simulated data due to the sensitivity of the (anomaly detection) results
obtained on real data.
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Figure 4. Example of Classifying Space Objects into One of Two Classes
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Figure 5. An Example of Sparse Feature Extraction on Real Data (3-Axis Stabilized GEO Satellite)

Feature Extraction Example using Real Data

Feature extraction is a critical prerequisite for downstream Athena components such as anomaly
detection and object classification, since it is the choice of computed features that enables detection
of subtle anomalies or separation of different object classes in feature space. Thus, we first present
an illustrative result on sparse feature extraction using a sample of real data. Figure 5 shows feature
extraction for photometric data collected on a 3-axis stabilized GEO satellite. The top plot shows
(in blue) the observed signature (apparent visual magnitude as a function of the solar phase angle).
The red curve is a reconstruction of the signature using the extracted feature representation, which
is shown in the bottom plot. In particular, the bottom plot shows the sparse coefficient vector x
computed by solving the optimization problem described in (4). In this case, the dictionary matrix
D consists of two carefully chosen basis sets. The coefficients corresponding to the first basis are
shown in blue, and those corresponding to the second basis are shown in red. As can be seen,
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the extracted coefficients are mostly zero, with a few non-zero entries able to capture the original
signature well, judging from the reconstruction shown in the top plot (in red). Note that our methods
also allow us to also reconstruct interpolated values of the signature in portions where there are no
observations. By computing a sparse feature representation of a photometric signature as shown
in Figure 5, we are able to capture the important aspects of a noisy and possibly undersampled
photometric signature in an parsimonious and efficient manner. The ultimate beneficiaries of such
a representation are downstream anomaly detection and object classification components, as we
demonstrate next.

Anomaly Detection using Simulated Data

In order to assess the performance of Athena algorithms in a reliable manner, it was necessary to
be able to generate physically realistic simulated data, such that we have “truth” information avail-
able for evaluating the algorithms. Toward that end, we made several updates to AFRL’s Ananke
simulation software, including the following: (i) command line interface for faster light curve sim-
ulation, (ii) Monte Carlo simulations support, (iii) ability to vary reflectance properties of different
facets in BRDF models, and (iv) ability to simulate ground-based observations. In addition, sim-
ulation of anomalies was deemed necessary to test the anomaly detection algorithm performance.
Two types of anomaly simulations were implemented: (i) attitude change anomalies, and (ii) un-
controlled spin state anomalies.

We now present several results for anomaly detection on simulated data using the unsupervised
learning framework described earlier. The main type of result we show in this paper is the ability
to detect anomalous photometric signatures amongst a pool of signatures on the same object or
the same type of object. Importantly, no prior knowledge of types of anomalies is assumed here.
Instead, anomalous patterns are allowed to emerge automatically by the separation of the raw data
into a low-rank and sparse component, as described in our anomaly detection framework discussion
above. To illustrate the anomaly detection use case, we now describe the results on four test cases:

• Test Case 1: In this test case, 20 lightcurves from similar uncontrolled and drifting GEO objects
obtained from a ground-based sensor were simulated. These lightcurves are shown in Figure 6 as
a function of the equitorial signed phase angle. Three of these signatures, however, are anoma-
lous in the sense that their spin rates are significantly higher than all other data points. These
anomalous signatures are circled in red. Figure 7 shows the result of solving our anomaly de-
tection optimization problem, in the form of a heat map of the low-rank (L) and sparse (S)
matrices obtained via decomposition of the feature vector cross-correlation matrix. The reader
should focus their attention on S matrix, where the anomalous signatures reveal themselves as
the high-magnitude components of the matrix (matrix row/column indices 3, 7, and 17, which
correspond to signatures 2, 6, and 16 in Figure 6). Clearly, a simple thresholding scheme with an
appropriately tuned threshold would detect these signatures as anomalous cases within this pool
of signatures.

• Test Case 2: The setup here is similar. In this test case, 20 lightcurves from similar Nadir-pointing
GEO satellites obtained from a ground-based sensor were simulated. These lightcurves are shown
in Figure 8 as a function of the equitorial signed phase angle. Two of these signatures, however,
are anomalous in the sense that they contain uncontrolled behavior in portions of the signature,
generated by artificially removing their control states. These anomalous signatures are circled
in red. Figure 9 shows the result of solving our anomaly detection optimization problem, in the
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form of a heat map of the low-rank (L) and sparse (S) matrices obtained via decomposition of
the feature vector cross-correlation matrix. The anomalous signatures reveal themselves as the
high-magnitude components of the S matrix (in this case, signatures 2 and 6). Again, a simple
thresholding scheme would detect these anomalies.

• Test Case 3: In this test case, 20 lightcurves from similar Sun-pointing GEO satellites obtained
from a ground-based sensor were simulated. These lightcurves are shown in Figure 10 as a func-
tion of the equitorial signed phase angle. All of these cases include an attitude change maneuver
in the beginning period of the data collection. Two of these signatures, however, are anomalous in
the sense that they contain a rare maneuver in the latter portion of the signature. These anomalous
signatures are shown in red. Figure 11 shows the result of solving our optimization problem, in
the form of a heat map of the low-rank (L) and sparse (S) matrices obtained via decomposition
of the feature vector cross-correlation matrix. The anomalous signatures reveal themselves as
the high-magnitude components of the S matrix (in this case, signatures 3 and 17). Importantly,
note that if a simple thresholding scheme is applied, then the routine maneuver-induced spikes in
the beginning of each case would not be declared as an anomaly, but the rare maneuver states in
cases 3 and 17 would be. This determination would be made not from a prior model of what an
anomaly looks like, but inferring what is normal and what is anomalous from the data itself.

• Test Case 4: In this final test case, again, 20 lightcurves from similar Sun-pointing GEO satellites
obtained from a ground-based sensor were simulated. These lightcurves are shown in Figure 12
as a function of the equitorial signed phase angle. All of these cases include an uncontrolled state
period in the latter portion of the signature. Two of these signatures, however, are anomalous in
the sense that they contain a controlled maneuver in the beginning period of the data collection.
These anomalous signatures are shown in red. Figure 13 shows the result of solving our anomaly
detection optimization problem, in the form of a heat map of the low-rank (L) and sparse (S)
matrices obtained via decomposition of the feature vector cross-correlation matrix. The anoma-
lous signatures reveal themselves as the high-magnitude components of the S matrix (in this case,
signatures 7 and 15). The difference between this test case and Test Case 3 is that the maneuver
in the beginning of cases 7 and 15 is the rare event, and the unstable state in the latter portion of
the lightcurves is the common routine event (the situation in Test Case 3 was reversed). A simple
thresholding scheme would reveal signatures 7 and 15 as anomalous.

Finally, we note that in all of the above test cases, the use of the feature data matrix (instead of the
raw photometric signatures) yields improved detection performance from our algorithms. That is,
although not shown in the above results, if we were to perform the eRPCA decomposition on the
raw photometric data cross-correlation matrices, then the anomalous signatures do not ‘light-up’ as
conspicuously as they do when using our feature representation instead.

Object Classification Results

In section we present results on object classification on simulated data. The simulation framework
used here is as follows. First, the Ananke Simulation Software was used to simulate light curves
of objects in the following classes: (i) debris fragment, (ii) rocket body, (iii) sun-pointing payload,
and (iv) “M-Shape” payload (an object type with two solar panel-like facets). Next, 50 Monte
Carlo samples were simulated for each class, where each sample is a full light curve. A random
subset of the samples was then used as training data for learning classifier, and the rest set aside as
the hold-out test set. Finally, the supervised learning pipeline depicted in Figure 15 was executed.
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Figure 6. Anomaly Detection Test Case 1: Data
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Figure 7. Anomaly Detection Test Case 1: eRPCA Decomposition
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Figure 8. Anomaly Detection Test Case 2: Data

The anomalous cases light up  

Figure 9. Anomaly Detection Test Case 2: eRPCA Decomposition
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20 cases of similar Sun-pointing objects in GEO. 

All cases conduct a routine attitude change maneuver during the beginning portion 
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Figure 10. Anomaly Detection Test Case 3: Data
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Figure 11. Anomaly Detection Test Case 3: eRPCA Decomposition
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All cases conduct a routine long maneuver in the latter stage 
 (greater than zero phase angle). However, notice 2 cases simulated with rare maneuver. 
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Figure 12. Anomaly Detection Test Case 4: Data
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Figure 13. Anomaly Detection Test Case 4: eRPCA Decomposition
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Figure 14. Example Photometric Signatures Simulated for Four Object Classes
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Figure 15. Object Classification Pipeline

All data was simulated with ground-based sensors, and all objects are in GEO. Figure 14 shows
examples of photometric signatures simulated for each of the object classes. As discussed earlier
in our technical discussion, after feature extraction, the next step in the Athena pipeline is learning
a classifier that uses these features to discriminate (i.e., learn decision boundaries) between objects
of different classes. Given the photometric signatures for the four different object classes, can we
learn a classifier that automatically recognizes a newly acquired signature as belonging to one of
these classes (or to a different unrepresented class)?

Figure 16 shows the result of running a multi-class support vector machine (SVM), operating on
a PCA-reduced representation of the sparse feature representation of the raw data. In particular,
as can be seen in the figure, the four object classes appear to be separated in the feature space
obtained by keeping the top three principal components. Although not shown, if we had run PCA
on the raw signatures directly, we do not obtain such a separation. The decision boundaries learned
by the SVM are not shown, since they are difficult to visualize. These boundaries provide optimal
separating manifolds that separate the four clusters of space objects. Thus, in this example, the SVM
achieves perfect classification performance. We note, however, that as the training data is reduced
and the data is simulated with higher noise levels, the separation between the classes reduces and
the classification error increases.
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Result of running a learned classifier on PCA-reduced  
sparse feature vectors of Monte Carlo test set  
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Figure 16. Object Classification Result Visualization

SUMMARY AND CONCLUSIONS

In this paper, we described the main components of the Athena v1.0 data flow pipeline, includ-
ing the compressed sensing-based feature extraction algorithms, unsupervised anomaly detection
framework, overview of supervised learning for object classification, and the Athena database which
enables the formation of training and test datasets. We first showed how our feature extraction
algorithms can capture the important aspects of real photometric signatures in a faithful yet par-
simonious manner. We then showed, via several simulated test cases, the power of our feature
representation combined with our unsupervised learning framework, for detecting various type of
anomalous events amongst a pool of photometric signature data collections, as well as for separat-
ing different object classes of interest in an optimal feature space for doing so. Importantly, our test
cases show how our framework does not assume a prior model of normality or anomalous behavior,
and instead lets the anomalous events be treated as rare events that reveal themselves by way of
a rigorous decomposition of the event cross-correlation matrix. We emphasize that the anomalous
events are detected more easily using the sparse feature representation as compared to using the raw
photometric data alone. Similarly, it is the feature representation that results in the separation (in
feature space) of the historical photometric signatures belonging to the different object classes of
interest, which ultimately leads to improved classification performance. Thus, as photometric sig-
nature data collections increase within the SSA community in the near future, the primary benefit
of the system to operators and analysts is that thousands of signatures can be screened efficiently
and automatically for detecting anomalous events and performing an initial object classification into
a pre-defined taxonomy, in order to facilitate detailed downstream I&W analysis on only a small
subset of large data collections.
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