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(57) ABSTRACT 

Embodiments of the present invention characterizing the 
uncertainty of the orbital state of an Earth-orbiting space 
object hereof using a Gauss von Mises probability density 
function defined on the n+1 dimensional cylindrical manifold 
IR'xS. Additionally, embodiments of the present invention 
can include transforming a Gauss von Mises distribution 
under a diffeomorphism and approximating the output as a 
Gauss von Mises distribution. Embodiments of the present 
invention can also include fusing a prior state represented by 
a Gauss von Mises distribution with an update report, wherein 
the update can be either another Gauss von Mises distribution 
of the same dimension as the prior oran observation related to 
the prior by a stochastic measurement model. A Gauss von 
Mises distribution can be calculated from a plurality of 
reports, wherein the reports are either Gauss von Mises dis 
tributions or observations related to the state space by a sto 
chastic measurement model. 

45 Claims, 14 Drawing Sheets 
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1. 

METHODS AND SYSTEMIS FOR UPDATINGA 
PREDCTED LOCATION OF AN OBJECT INA 

MULT-DIMIENSIONAL SPACE 

STATEMENT AS TO RIGHTS TO INVENTIONS 
MADE UNDER FEDERALLY SPONSORED 

RESEARCH AND DEVELOPMENT 

This invention was made with government Support under 
Contract No. FA9550-12-C-0034 awarded by the Air Force 
Office of Scientific Research to Numerica Corporation. The 
government has certain rights in the invention. 

FIELD OF THE INVENTION 

The present invention relates generally to non-linear esti 
mation and computerized techniques to characterize uncer 
tainty on a cylindrical manifold and, more particularly, to 
characterizing the state uncertainty of Earth-orbiting space 
objects to Support many functions in space situational aware 
CSS. 

BACKGROUND OF THE INVENTION 

Space Situational Awareness (SSA) includes knowledge of 
the near-Earth space environment which can be accomplished 
through the tracking and identification of Earth-orbiting 
space objects to protect space assets and maintain awareness 
of potentially adversarial space deployments. Although cur 
rent operational systems have performed well, future needs 
will far exceed current capabilities. With the instantiation of 
more accurate sensors and the increased probability of future 
collisions between space objects, the potential number of 
newly discovered objects is likely to increase by an order of 
magnitude within the next decade, thereby placing an ever 
increasing burden on current operational systems. Moving 
forward, the implementation of new, innovative, rigorous, 
robust, and autonomous methods for space object identifica 
tion and discrimination are required to enable the develop 
ment and maintenance of the present and future space catalog 
and to support the overall SSA mission. 

Fundamental to the success of the SSA mission is the 
rigorous inclusion of uncertainty in the space Surveillance 
network (SSN). The proper characterization of uncertainty, 
Sometimes called covariance realism, is a common require 
ment to many SSA functions including tracking and data 
association, resolution of uncorrelated tracks (UCTs), con 
junction analysis and probability of collision, sensor resource 
management, and anomaly detection. While tracking envi 
ronments, such as air and missile defense, make extensive use 
of Gaussian and local linearity assumptions within algo 
rithms for uncertainty management, space Surveillance is 
inherently different due to long time gaps between updates, 
high mis-detection rates, non-linear and non-conservative 
dynamics, and non-Gaussian phenomena. What is state-of 
the-art and robust for air and missile defense need not be 
applicable to SSA. 
The field of sequential state estimation has much of its 

origins in the pioneering work of R. E. Kalman. Considered to 
be one of the most simple dynamic Bayesian networks, the 
Kalman filter updates a system state recursively over time 
using incoming measurements and mathematical process 
models. The basic Kalman filter assumes linearity in the 
underlying dynamical and measurement models and that all 
error terms are Gaussian. At the other end of the spectrum is 
the general Bayesian non-linear filter which updates the full 
Probability Density Function (PDF) of the system recursively 
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2 
over time while permitting non-Gaussian error terms and 
non-linear process models. Between the Kalman filter and the 
general Bayesian framework are a host of Sub-optimal meth 
ods for sequential filtering which have been developed over 
the past fifty years and tailored to specific applications. The 
most common extensions and generalizations of the Kalman 
filter include the extended Kalman filter (EKF) and the 
unscented Kalman filter (UKF) which both work on non 
linear systems. A feature of the latter is its “derivative-free” 
nature. Within the filter prediction step, the propagated state 
estimate and covariance are reconstructed from a determin 
istically chosen set of "sigma points' propagated through the 
full non-linear dynamics. The equivalence between this 
reconstruction or “unscented transform' with Gauss-Hermite 
quadrature has been established. Variations and extensions of 
the UKF, including a more numerically stable “square-root 
version and the higher-order Gauss-Hermite filters, have been 
formulated. In space Surveillance, the State or orbital uncer 
tainty can be highly non-Gaussian and filtering techniques 
beyond the EKF and UKF are sometimes required. Examples 
include Gaussian Sum (mixture) filters, filters based on non 
linear propagation of uncertainty using Taylor series expan 
sions of the solution flow, particle filters, and the probability 
hypothesis density filter and its generalization, the cardinal 
ized probability hypothesis density filter. 
A drawback of many existing methods for non-linear fil 

tering and uncertainty management, including the ones 
reviewed above, is the constraint that the state space be 
defined on an n-dimensional Cartesian space IR'. Any statis 
tically rigorous treatment of uncertainty uses PDFs defined 
on the underlying manifold on which the system state is 
defined. In the space Surveillance tracking problem, the sys 
tem state is often defined with respect to orbital element 
coordinates. In these coordinates, five of the six elements are 
approximated as unbounded Cartesian coordinates on IR 
while the sixth element is an angular coordinate defined on 
the circle S with the angles 0 and 0+2tk (where k is any 
integer) identified as equivalent (i.e., they describe the same 
location on the orbit). Thus, more rigorously, an orbital ele 
ment state space is defined on the six-dimensional cylinder 
RxS. Indeed, the mistreatment of an angular coordinate as 
an unbounded Cartesian coordinate can lead to many unex 
pected Software faults and other dire consequences. 

BRIEF SUMMARY OF THE INVENTION 

Embodiments of the present invention overcome the dis 
advantages and limitations of the prior art by providing meth 
ods and systems for properly characterizing the uncertainty of 
a state defined on a n+1 dimensional cylindrical manifold 
IR 'XS, e.g., characterizing the uncertainty of the orbital state 
of an Earth-orbiting space object. 

In order to provide a more statistically rigorous treatment 
ofuncertainty in the space Surveillance tracking environment 
and to better support the aforementioned SSA functions, 
embodiments of the present invention provide a new class of 
multivariate probability density functions (PDFs), called 
Gauss von Mises (GVM) distributions, formulated to more 
accurately characterize the uncertainty of a space objects 
state or orbit. Using the GVM distribution as input, exten 
sions and improvements can be made to tracking algorithms 
including the Bayesian non-linear filter used for uncertainty 
propagation and data fusion, batch processing and orbit deter 
mination, multi-dimensional quadrature, and likelihood 
ratios and other scoring metrics used in data association. An 
exemplary application of embodiments described herein is 
the use of the GVM distribution within a sequential non 
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linear filter resulting in improved algorithms for uncertainty 
propagation and data fusion to Support higher level SSA 
functions. Embodiments of the present invention provide a 
tractable implementation of the Bayesian non-linear filter 
using the GVM distribution to model state or orbital uncer 
tainty while providing significant improvements, both in 
terms of accuracy and computational expense, over the afore 
mentioned methods. 

In accordance with an embodiment of the present invention 
characterizing the uncertainty of the orbital state of an Earth 
orbiting space object hereof represents the uncertainty using 
the Gauss von Mises probability density function defined on 
the n+1 dimensional cylindrical manifold IR'xS. Addition 
ally, embodiments of the present invention can include trans 
forming a Gauss von Mises distribution under a diffeomor 
phism and approximating the output as a Gauss von Mises 
distribution. Embodiments of the present invention can also 
include fusing a prior state represented by a Gauss von Mises 
distribution with an update report, wherein the update can be 
either another Gauss von Mises distribution of the same 
dimension as the prior oran observation related to the prior by 
a stochastic measurement model. A Gauss von Mises distri 
bution can be calculated from a plurality of reports, wherein 
the reports are either Gauss von Mises distributions or obser 
Vations related to the state space by a stochastic measurement 
model. Embodiments can include, but are not limited to, 
providing a Suite of decision-making tools, based on a method 
for properly characterizing the uncertainty of the orbital state 
of an Earth-orbiting space object as described herein, that 
allow an operator to take an appropriate course of action Such 
as maneuvering a satellite in order to avoid a potential colli 
sion or updating a catalog of space objects in order to improve 
the accuracy of the objects in the catalog. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The accompanying drawings, which are incorporated in 
and form a part of the specification, illustrate embodiments of 
the present invention and, together with the description, serve 
to explain the principles of the invention. In the drawings: 

FIG. 1 is a flowchart illustrating an exemplary process for 
transforming a Gauss von Mises distribution under a diffeo 
morphism and approximating the output as a Gauss von 
Mises distribution according to one embodiment of the 
present invention; 

FIG. 2 is a flowchart illustrating an exemplary process for 
fusing a prior state represented by a Gauss von Mises distri 
bution with an update report, wherein said update is another 
Gauss von Mises distribution of the same dimension as the 
prior according to one embodiment of the present invention; 

FIG. 3 is a flowchart illustrating an exemplary process for 
fusing a prior state represented by a Gauss von Mises distri 
bution with an update report, wherein said update is an obser 
Vation related to the prior by a stochastic measurement model 
according to one embodiment of the present invention; 

FIG. 4 is a flowchart illustrating an exemplary process for 
generating a Gauss von Mises distribution from a plurality of 
reports, wherein said reports are Gauss von Mises distribu 
tions according to one embodiment of the present invention; 

FIG. 5 is a flowchart illustrating an exemplary process for 
generating a Gauss von Mises distribution from a plurality of 
reports, wherein said reports are observations related to the 
state space by a stochastic measurement model according to 
one embodiment of the present invention: 

FIGS. 6a and 6b are graphs illustrating the fusion of a prior 
probability density function p(0) with an update probability 
density function p(0) wherein (a) the angle 0 is mis-repre 
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4 
sented as a Cartesian variable and (b) the angle 0 is repre 
sented correctly as a circular variable according to one 
embodiment of the present invention; 

FIG. 7 is a graph showing plots of the von Mises probabil 
ity density function with location parameter C.–0 and differ 
ent values of the concentration parameter K according to one 
embodiment of the present invention; 

FIGS. 8a and 8b are graphs illustrating the setup for testing 
if a point is a statistically significant realization of a Gauss 
von Mises distribution with the shaded regions depicting 
those regions in which the null hypothesis is rejected accord 
ing to one embodiment of the present invention; 

FIGS. 9a-9fare graphs illustrating the uncertainty of a 
space objects orbital state at different epochs t-to computed 
from the prediction steps of the extended Kalman filter 
(EKF), unscented Kalman filter (UKF), Gauss von Mises 
(GVM) filter, and a particle filter and used in the accompa 
nying EXAMPLE for demonstration according to one 
embodiment of the present invention; 

FIG. 10 is a graph showing plots of the normalized Lerror 
using different methods for uncertainty propagation used in 
the accompanying EXAMPLE for demonstration according 
to one embodiment of the present invention; 

FIG. 11 is a block diagram illustrating components of an 
exemplary operating environment in which various embodi 
ments of the present invention may be implemented; and 

FIG. 12 is a block diagram illustrating an exemplary com 
puter system in which embodiments of the present invention 
may be implemented. 

DETAILED DESCRIPTION OF THE INVENTION 

In the following description, for the purposes of explana 
tion, numerous specific details are set forth in order to provide 
a thorough understanding of various embodiments of the 
present invention. It will be apparent, however, to one skilled 
in the art that embodiments of the present invention may be 
practiced without some of these specific details. In other 
instances, well-known structures and devices are shown in 
block diagram form. 
The ensuing description provides exemplary embodiments 

only, and is not intended to limit the scope, applicability, or 
configuration of the disclosure. Rather, the ensuing descrip 
tion of the exemplary embodiments will provide those skilled 
in the art with an enabling description for implementing an 
exemplary embodiment. It should be understood that various 
changes may be made in the function and arrangement of 
elements without departing from the spirit and scope of the 
invention as set forth in the appended claims. 

Specific details are given in the following description to 
provide a thorough understanding of the embodiments. How 
ever, it will be understood by one of ordinary skill in the art 
that the embodiments may be practiced without these specific 
details. For example, circuits, systems, networks, processes, 
and other components may be shown as components in block 
diagram form in order not to obscure the embodiments in 
unnecessary detail. In other instances, well-known circuits, 
processes, algorithms, structures, and techniques may be 
shown without unnecessary detail in order to avoid obscuring 
the embodiments. 

Also, it is noted that individual embodiments may be 
described as a process which is depicted as a flowchart, a flow 
diagram, a data flow diagram, a structure diagram, or a block 
diagram. Although a flowchart may describe the operations as 
a sequential process, many of the operations can be per 
formed in parallel or concurrently. In addition, the order of the 
operations may be re-arranged. A process is terminated when 
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its operations are completed, but could have additional steps 
not included in a figure. A process may correspond to a 
method, a function, a procedure, a Subroutine, a Subprogram, 
etc. When a process corresponds to a function, its termination 
can correspond to a return of the function to the calling 
function or the main function. 
The terms “machine-readable medium' and/or “computer 

readable medium' include, but are not limited to portable or 
fixed storage devices, optical storage devices, wireless chan 
nels and various other mediums capable of storing, contain 
ing or carrying instruction(s) and/or data. A code segment or 
machine-executable instructions may represent a procedure, 
a function, a Subprogram, a program, a routine, a Subroutine, 
a module, a software package, a class, or any combination of 
instructions, data structures, or program statements. A code 
segment may be coupled to another code segment or a hard 
ware circuit by passing and/or receiving information, data, 
arguments, parameters, or memory contents. Information, 
arguments, parameters, data, etc. may be passed, forwarded, 
ortransmitted via any Suitable means including memory shar 
ing, message passing, token passing, network transmission, 
etc. 

Furthermore, embodiments may be implemented by hard 
ware, Software, firmware, middleware, microcode, hardware 
description languages, or any combination thereof. When 
implemented in Software, firmware, middleware or micro 
code, the program code or code segments to perform the 
necessary tasks may be stored in a machine readable medium. 
A processor(s) may perform the necessary tasks. 

Embodiments of the invention provide systems and meth 
ods for properly characterizing the uncertainty of a state 
defined on a n+1 dimensional cylindrical manifold IR'xS, 
e.g., characterizing the uncertainty of the orbital state of an 
Earth-orbiting space object. More specifically, embodiments 
of the present invention provide a new class of multivariate 
probability density functions (PDFs), called Gauss von Mises 
(GVM) distributions, formulated to more accurately charac 
terize the uncertainty of a space objects state or orbit. Using 
the GVM distribution as input, extensions and improvements 
can be made to tracking algorithms including the Bayesian 
non-linear filter used for uncertainty propagation and data 
fusion, batch processing and orbit determination, multi-di 
mensional quadrature, and likelihood ratios and other scoring 
metrics used in data association. An exemplary application of 
embodiments described herein is the use of the GVM distri 
bution within a sequential non-linear filter resulting in 
improved algorithms for uncertainty propagation and data 
fusion to support higher level SSA functions. Embodiments 
of the present invention provide a tractable implementation of 
the Bayesian non-linear filter using the GVM distribution to 
model State or orbital uncertainty while providing significant 
improvements, both in terms of accuracy and computational 
expense, over the aforementioned methods. 
One feature of the GVM distribution is its definition on a 

cylindrical state space IR'xS with the proper treatment of the 
angular coordinate within the general framework of direc 
tional statistics. Hence, the GVM distribution is robust for 
uncertainty quantification in orbital element space. The 
Gauss von Mises (GVM) distribution uses the von Mises 
distribution, the analogy of a Gaussian distribution defined on 
a circle, to robustly describe uncertainty in the angular coor 
dinate. The marginal distribution in the Cartesian coordinates 
is Gaussian. Additionally, the GVM distribution can contain a 
parameter set controlling the correlation between the angular 
and Cartesian variables as well as the higher-order cumulants 
which gives the level sets of the GVM PDF a distinctive 
“banana’’ or “boomerang shape. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
By providing a statistically robust treatment of the uncer 

tainty in a space objects orbital element state by rigorously 
defining the uncertainty on a cylindrical manifold, the GVM 
distribution can Supporta Suite of next-generation algorithms 
for uncertainty propagation, data association, space catalog 
maintenance, and other SSA functions. When adapted to state 
PDFs modeled by GVM distributions, the general Bayesian 
non-linear filter can be tractable. The prediction step of the 
resulting GVM filter can be made derivative-free, like the 
UKF, by new quadrature rules for integrating a function mul 
tiplied by a GVM weight function, thereby extending the 
unscented transform. Moreover, prediction using the GVM 
filteruses the propagation of the same number of sigma points 
(quadrature nodes) as the standard UKF.Thus, the GVM filter 
prediction step (uncertainty propagation) has similar compu 
tational costs as the UKF and, as demonstrated in the 
EXAMPLE below, the former can maintain a proper charac 
terization of the uncertainty much longer than the latter. In the 
most exceptional cases when the actual state uncertainty devi 
ates from a GVM distribution, a mixture version of the GVM 
filter can be formulated (using GVM distributions as the 
mixture components) to provide proper uncertainty realism in 
analogy to the Gaussian Sum (mixture) filter. Furthermore, 
the GVM filter can be applicable in various regimes of space 
and to both conservative (e.g., gravity) and non-conservative 
forces (e.g., atmospheric drag, Solar radiation pressure). Sto 
chastic process noise, uncertain model parameters, and 
residual biases can also be treated within the GVM filter using 
extensions of classical consider analysis and the Schmidt 
Kalman filter. A maximum a posteriori batch processing 
capability for orbit determination (track initiation) can also be 
formulated which generates a GVM PDF characterizing the 
initial orbital state and uncertainty from a sequence of input 
reports Such as radar, electro-optical, or infrared sensor obser 
Vation data or even full track states. To Support the data fusion 
problem of tracking, the correction step of the Bayesian non 
linear filter can also be specialized to GVM distributions 
thereby enabling one to combine reports emanating from a 
common object to improve the state or understanding of that 
object. The filter correction step can also furnisha statistically 
rigorous prediction error which appears in the likelihood 
ratios for scoring the association of one report to another. 
Thus, the new GVM filter can be used to support multi-target 
tracking within a general multiple hypothesis tracking frame 
work. Additionally, the GVM distribution admits a distance 
metric which extends the classical Mahalanobis distance (y 
statistic). This new “Mahalanobis von Mises' metric provides 
a test for statistical significance and facilitates validation of 
the GVM filter. Another noteworthy feature of the GVM 
framework is its backwards compatibility with the space cata 
log and existing covariance-based algorithms. That is, the 
GVM distribution reduces to a Gaussian under suitable limits 
and the GVM filter reduces to the UKF in the case of linear 
dynamical and measurement models. 
To briefly demonstrate the implication of mis-characteriz 

ing orbital uncertainty and the improvements obtained when 
using the GVM distribution, FIGS. 9a-9f provides a simple 
example comparing the uncertainty propagation algorithms 
implicit in the EKF, UKF, and new GVM filter. FIG. 9a shows 
a particle representation of an orbital state PDF in equinoctial 
orbital element space plotted on the plane of the semi-major 
axis and mean longitude coordinates. The particles 905 are 
dispersed according to the level curves 910 ranging from 0.5 
to 3 sigmas in half sigma increments. FIG. 9f shows the 
results of propagating this initial uncertainty (for eight orbital 
periods in this example) using the EKF, UKF, and GVM filter. 
The respective level curves of the PDF computed from the 
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EKF925, UKF920, and GVM915 filter are superimposed on 
the figure. The level curves computed from the GVM filter 
can capture the actual uncertainty characterized by the par 
ticle ensemble. For the UKF, its covariance is indeed consis 
tent (realistic) in the sense that it agrees with that computed 
from the definition of the covariance using the true PDF. 
Thus, in this example, the UKF provides “covariance real 
ism' but does not support “uncertainty realism' since the 
covariance does not represent the actual banana-shaped 
uncertainty of the true PDF. Further, the state estimate pro 
duced from the UKF coincides with the mean of the true PDF. 
However, the mean is displaced from the mode of the true 
PDF. Consequently, the probability that the object is within a 
small neighborhood centered at the UKF state estimate 
(mean) is essentially zero. The EKF, on the other hand, pro 
vides a state estimate coinciding closely with the mode of the 
true PDF, but the covariance tends to collapse making infla 
tion necessary to begin to cover the uncertainty. In neither the 
EKF nor UKF case does the covariance actually model the 
uncertainty. This example illustrates the problem of using a 
single Gaussian PDF (i.e., covariance) to represent uncer 
tainty and suggests that the GVM distribution provides a 
better representation of the actual orbital state PDF which is 
important if one is to achieve statistically robust character 
ization of uncertainty, which again is fundamental to achiev 
ing a robust capability across the SSN. 
The Gauss von Mises (GVM) distribution and its resulting 

applications can provide a new Suite of algorithms to Support 
the future needs of the SSA mission. The distribution can 
provide a mechanism for more accurately characterizing the 
uncertainty in a space objects orbit at little or no additional 
cost to existing methods in operation while providing back 
wards compatibility with legacy systems. The framework can 
Support (i) orbit determination to generate a realistic charac 
terization of an initial orbital state and uncertainty from a 
sequence of sensor observations, (ii) non-linear uncertainty 
propagation to predict the future location of a space object 
and properly characterize its orbital uncertainty at future 
times, (iii) conjunction analysis to estimate the probability 
that two space objects will collide, (iv) anomaly and maneu 
ver detection to determine if an object deviates from its 
expected kinematic trajectory, and (v) data fusion, tracking, 
and space catalog maintenance to update a catalog of space 
objects, online, as new observations are received, in order to 
improve the accuracy of the objects in the catalog. These SSA 
tracking algorithms based on the GVM distribution can pro 
vide next-generation upgrades to the Astrodynamic Stan 
dards software suite maintained by AFSpC and support the 
overall objectives of the JSpOC Mission System. Various 
additional details of embodiments of the present invention 
will be described below with reference to the figures. 

The organization of the invention description is described 
below. 

Section I entitled “Uncertainty on Manifolds’ gives an 
overview of uncertainty characterization in tracking and dis 
cusses coordinate systems used to describe a space objects 
orbital state and the pitfalls of mistreating an angular coordi 
nate by an unbounded Cartesian coordinate. The von Mises 
distribution is then introduced as one possible distribution to 
rigorously treat the uncertainty of an angular variable. 

Section II entitled “Construction of the Gauss von Mises 
Distribution' motivates and defines the Gauss von Mises 
(GVM) distribution. 

Section III entitled “Elementary Properties' lists various 
mathematical and statistical properties of the GVM distribu 
tion. 
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8 
Section IV entitled “Gauss von Mises Quadrature' extends 

the methodology of classical Gauss-Hermite quadrature to 
enable the computation of the expected value of a non-linear 
transformation of a GVM random variable, thereby providing 
a general framework for GVM quadrature. Such quadrature 
formulas play a key role in the derivation of the GVM filter 
prediction step. 

Section V entitled “Uncertainty Propagation develops the 
prediction step of the Bayesian non-linear filter using the 
GVM distribution as input thereby providing a method for 
approximating the non-linear transformation of a GVM dis 
tribution as another GVM distribution. Performance metrics 
used for validation and extensions to the propagation of mix 
tures of GVM distributions are also discussed. 

Section VI entitled “Data Fusion' specializes the correc 
tion step of the Bayesian non-linear filter to the case when the 
prior state is a random vector represented by a GVM distri 
bution and the update report is either another GVM random 
vector or an observation related to the prior by a stochastic 
measurement model. The corresponding prediction error 
term used to score the association of one report to another is 
also derived. 

Section VII entitled “Batch Processing treats the batch 
filtering problem which processes a sequence of reports 
simultaneously to produce a GVM distribution of the system 
state conditioned on the reports. 
The reader of this document is assumed to be familiar with 

the standard notation of linear algebra, in particular, the 
notions of matrices, vectors, matrix vector product, matrix 
inverse, and systems of linear equations. The reader of this 
document is also assumed to be familiar with elementary 
probability theory, in particular, the notations of random vari 
ables, random vectors, probability density functions, and 
transformations of random variables and random vectors. The 
required background can be obtained by reading books asso 
ciated with college courses in linear algebra, matrix analysis, 
and probability theory. It may also be useful to have familiar 
ity with orbital mechanics. 
I. Uncertainty on Manifolds 
A permeating theme throughout space situational aware 

ness is the achievement of the correct characterization and 
management of uncertainty, which in turn is used to Support 
conjunction analysis, data association, anomaly detection, 
and sensor resource management. The Success in achieving a 
proper characterization of the uncertainty in the state of a 
space object can depend greatly on the choice of coordinate 
system. Under Gaussian assumptions, the coordinates used to 
represent the state space can impact how long one can propa 
gate the uncertainty under a non-linear dynamical system. A 
Gaussian random vector need not get mapped to a Gaussian 
under a non-linear transformation. The representation of a 
space object's kinematic State in orbital element coordinates, 
rather than Cartesian Earth-Centered-Inertial (ECI) position 
Velocity coordinates, is well-suited to the space Surveillance 
tracking problem since such coordinates “absorb the most 
dominant term in the non-linear gravitational force (i.e., the 
1/r term) leading to “more linear” propagations. Thus, these 
special coordinates can mitigate the departure from "Gaussi 
anity” under the non-linear propagation of an initial Gaussian 
state probability density function (PDF) with respect to 
orbital elements. Additional discussions are provided in Sub 
section I. A below. The benefits of the orbital element coordi 
nates are also exploited in the propagation of a Gauss von 
Mises (GVM) PDF under the non-linear two-body dynamics. 
This framework is developed later in Section V. 
The application of orbital element coordinates within tra 

ditional sequential filtering methods such as the extended 
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Kalman filter (EKF), unscented Kalman filter (UKF), and 
even the highest fidelity Gaussian Sum filters has one major 
disadvantage: the mean anomaly (or mean longitude) angular 
coordinate describing the location along the orbit is incor 
rectly treated as an unbounded Cartesian coordinate. Some 
side effects and pitfalls of such mistreatments within the 
problems of averaging and fusing angular quantities are 
described in Subsection I.B. Ultimately, what is helpful to 
rectify these shortcomings is a statistically rigorous treatment 
of the uncertainty on the underlying manifold on which the 
system state is defined. The theory of directional statistics 
provides one possible development path. Though the theory 
can treat uncertainty on very general manifolds (such as tori 
and hyper-spheres) possessing multiple directional quanti 
ties, this work focuses on distributions defined on the circle 
S and the n+1-dimensional cylinder R'xS. The latter is the 
manifold on which the orbital element coordinates are more 
accurately defined. As a starting point, the von Mises PDF is 
introduced in Subsection I.C as one possible distribution to 
rigorously treat the uncertainty of a single angular variable 
defined on the circle. The von Mises distribution paves the 
way for the next section concerning the development of the 
GVM distribution used to represent uncertainty on a cylinder. 

I.A. Orbital Element Coordinate Systems 
With respect to Cartesian ECI position-velocity coordi 

nates (rr), the acceleration f of a space object (e.g., satellite, 
debris) can be written in the form 

le 
* = - r + aper (r. i, t). (1) 

In this equation, r-rl, Lt. GM where G is the gravitational 
constant and Ma is the mass of the Earth, and a encapsu 
lates all perturbing accelerations of the space object other 
than those due to the two-body point mass gravitational accel 
eration. 
The equinoctial orbital elements (a, h, k, p, q, l) define a 

system of curvilinear coordinates with respect to six-dimen 
sional position-Velocity space. Physical and geometric inter 
pretations of these coordinates as well as the transformation 
from equinoctial elements to ECI are known. Models for the 
perturbing acceleration a are also well known. 

The representation of the dynamical model (1) in coordi 
nate systems other than ECI can be obtained using the chain 
rule. Indeed, ifu-u(r,r) denotes a coordinate transformation 
from ECI position-velocity coordinates (rr) to a coordinate 
system ueR (e.g., equinoctial orbital elements), then (1) is 
transformed to 

dit (2) 
it turpert - ai. aper (r. , t), 

where 

it. =?". - 'e?". (3) unpert - a 3 * 

If u is the vector of equinoctial orbital elements, then (3) 
simplifies to 

i.e., (0,0,0,0,0,Vie?a)". (4) 
Therefore, the time evolution of a space object’s equinoctial 
orbital element state (a, h, k, p, q, l) under the assumption of 
unperturbed two-body dynamics is 

at he hook. (i) poq(t)=qol (t)=io+no(t- 
to), (5) 

where no vua/a, is the mean motion at the initial epoch. 
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10 
It is now argued that an equinoctial orbital element state 

can be regarded as a state defined on the six-dimensional 
cylinder R x.S. The definition of the equinoctial orbital 
elements (a, h, k, p, q, l) implicitly assumes closed (e.g., 
elliptical) orbits which imposes the following constraints: 

Though any real value can be assigned to the mean longitude 
coordinate 1, the angles 1 and 1+2 k, for any integer ke Z. 
define the same location along the orbit. Hence, 1 can be 
regarded as an angular coordinate defined on the circle S. 
Mathematically, the first five elements (a, h, k, p, q) are not 
defined everywhere on R. Physically however, it can be 
argued that the sample space in these five coordinates can be 
extended to all of R. Indeed, the elements (a, h, k, p, q) 
describe the geometry of the (elliptical) orbit and the orien 
tation of the orbit relative to the equatorial plane. In practice, 
the uncertainties in the orbital geometry and orientation are 
sufficiently small so that the probability that an element is 
close to the constraint boundary is negligible. Moreover, 
under unperturbed dynamics, these five elements are con 
served by Kepler's laws (see Equations (5)) and, conse 
quently, their respective uncertainties do not grow. That said, 
under the above assumptions, the manifold on which the 
elements (a, h, k, p, q) are defined can be approximated as all 
of IR and the full six-dimensional equinoctial orbital ele 
ment state space can be defined on the cylinder R x.S. With 
the inclusion of perturbations in the dynamics (e.g., higher 
order gravity terms, drag, Solar radiation, etc.), the first five 
elements evolve with small periodic variations in time and 
their uncertainties exhibit no long-term secular growth. Thus, 
the same cylindrical assumptions on the state space apply. 
These discussions also equally apply to other systems of 
orbital elements such as Poincaré orbital elements, modified 
equinoctial orbital elements, and alternate equinoctial orbital 
elements. 
Though the uncertainties in the first five equinoctial ele 

ments exhibit only small periodic changes under two-body 
dynamics, it is the uncertainty along the semi-major axis 
coordinate a which causes the uncertainty along the mean 
longitude coordinate 1 to grow withoutbound. In other words, 
as time progresses, one can generally maintain a good under 
standing of the geometry and orientation of the orbit, but 
confidence is gradually lost in the exact location of the object 
along its orbit. The growth in the uncertainty in 1 can cause 
undesirable consequences if 1 is incorrectly treated as an 
unbounded Cartesian variable or the uncertainty in 1 is mod 
eled as a Gaussian. With a Gaussian assumption imposed on 
the PDF in 1, one would assign different likelihoods to 1 and 
1+2tk for different values of ke Z, even though the mean 
longitudes 1 and 1+27tk define the same location on the circle. 
Additional insights are provided in the next Subsection. 

I.B. Examples of Improper Treatments of Angular Quan 
tities 
As described in the previous Subsection, the mean longi 

tude coordinate (i.e., the sixth equinoctial orbital element) is 
an angular coordinate in which the angles 1 and 1+2 tk are 
identified (equivalent) for any integer ke Z. In other words, 
the mean longitude is a circular variable and, as such, a 
rigorous treatment should not treat it as an unbounded real 
valued Cartesian variable. In many cases (and with proper 
branch cuts defined), it is practical to treat the mean anomaly 
as real-valued, allowing for distributions to be represented as 
Gaussians, for example. The drawback of this approach is that 
the resulting statistics can depend on choice of the integerk. 
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For example, Suppose one wishes to compute the conven 
tional average 6 of two angles 0 =TL/6 and 0-7L/6. On one 
hand, 

1 
6 = -(6 + 6) = 0. 5 (0, + 2) 

On the other hand, since 0-7L/6 and 0=117L/6 define the 
same location on the circle, then using this equivalent value of 
0 in the definition of the average would yield 6-7t. Thus, in 
order for the conventional average to be well-defined, the 
statistic 

1 
2 

must be independent of the choice of k, ke Z. Clearly this is 
not the case for the simple example studied above. Different 
values ofk and k can define averages at opposite sides of the 
circle. The unscented transform used in the UKF can also 
exhibit similar side effects when used in equinoctial orbital 
element space (especially if the mean longitude components 
of the sigma points are sufficiently dispersed) because it 
requires one to compute a weighted average of angular (mean 
longitude) components. 
A more striking example of the mis-representation of a 

circular variable as an unbounded Cartesian variable is dem 
onstrated in FIG. 6a. In this simple example, considera one 
dimensional angular state space with two independent states: 
a “prior 0 and an “update' 0 with respective PDFs p(0) 
and p(0). The PDF in 0 is diffuse (i.e., the uncertainty is 
large) and, further, 0 is incorrectly modeled as an unbounded 
Cartesian variable. The update State 0 has a mean of Zero and 
a very Small variance (uncertainty). Any one of these curves 
can represent the PDF of the update since they are all equiva 
lent up to an integer 21 shift. The “correct update is ambigu 
ous. Within a non-linear filtering application, one might want 
to fuse the prior 0 with the information from 0. In such a 
case, the Bayesian filter correction step yields a “fused PDF 
p(0) in the fused state 0 given by 

where I=(-Oo, OO). Thus, the expression obtained for the fused 
PDF as well as the normalization constant c depend on the 
choice (i.e., 2It shift) of the update PDF. In particular, a 
mis-computed normalization constant c can have severe con 
sequences withina tracking system, as analogous expressions 
for cappear in the likelihood ratios for scoring the association 
of one report to another. FIG. 6b depicts how these ambiguity 
issues can be resolved by turning to the theory of directional 
statistics. Further analysis is provided in the next Subsection. 

I.C. von Mises Probability Density Function 
The source of the ambiguity in computing the fused PDF 

(6) in the example of the previous subsection lies in the 
incorrect treatment of an angular variable as an unbounded 
Cartesian real-valued variable. These problems can be recti 
fied by representing the state PDF not necessarily on a Car 
tesian space R" but instead on the manifold that more accu 
rately describes the global topology of the underlying State 
space. One change made for (equinoctial) orbital element 
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12 
states can be the representation of the uncertainty in the 
angular coordinate (mean longitude) as a PDF on the circle 
S so that the joint PDF in the six orbital elements defines a 
distribution on the cylinder R x.S. In order to do so, PDFs 
defined on the circle are used. 
A function p: R -> IR is a probability density function 

(PDF) on the circle S if 
1. p(0)=0 almost everywhere on (-Oo, oo), 
2. p(0+27t)=p(0) almost everywhere on (-CO, OO), 
3. "p(0).d6=1. 
One example satisfying the above conditions is the Von 

Mises distribution which provides an analogy of a Gaussian 
distribution defined on a circle. The von Mises PDF in the 
angular variable 0 is defined by 

27tlo (K) 
(7) 

VM (9; ar, k) = 

where Io is the modified Bessel function of the first kind of 
order 0. The parameters Land K are measures of location and 
concentration. As K->0", the von Mises distribution tends to 
a uniform distribution. For large K, the von Mises distribution 
becomes concentrated about the angle C. and approaches a 
Gaussian distribution in 0 with mean L and variance 1/K. 
Some example plots are shown in FIG. 7. An algebraically 
equivalent expression of (7) which is numerically stable for 
large values of K is 

(8) –2ksin (9-a) 
17M (8; Q, K) = pre-kick) 

The von Mises distribution (8) can be used in the next section 
to construct the Gauss von Mises distribution defined on the 
cylinder R "xS. 

This section concludes with a discussion on how the Von 
Mises distribution can resolve the problems in the previous 
Subsection concerning the averaging and fusion of angular 
quantities. Suppose 0, . . . . 0 is a sample of independent 
observations coming from a von Mises distribution. Then, the 
maximum likelihood estimate of the location parameter C. is 

1 Y . 
6 = - S. "| 

(9) 

Unlike the conventional average (0.1+...+0)/N, the “aver 
age" C. is independent of any 2I shift in the angles 0. In the 
fusion example, if the prior and update PDFs are von Mises 
distributions, i.e., 

then the fused PDF (6) can be formed unambiguously and 
p(0)=p(0+2tk) for any ke Z. As seen in FIG. 6b, there is no 
longer any ambiguity in how to choose the “correct update 
PDF p(0), since both p(0) and p(0) are properly defined 
circular PDFs. The integration interval I in the computation of 
the normalization constant cin (6) is any interval of length 21, 
i.e., I=(a,a+2 t) for some ae IR. In other words, the value of c 
is independent of the choice of a. 
II. Construction of the Gauss von Mises Distribution 

This section defines the Gauss von Mises (GVM) distribu 
tion used to characterize the uncertainty in a space objects 
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orbital state. Later, in Subsection II.B, the connection 
between the GVM distribution and a related family of distri 
butions is discussed. 

The proposed GVM distribution is not defined as a function 
of other random variables with specified probability density 
functions (PDFs). Instead, its construction is based on satis 
fying the following conditions listed below. 

1. The GVM family of multivariate PDFs can be defined on 
the n+1-dimensional cylindrical manifold IR 'xS.. 

2. The GVM distribution can have a sufficiently general 
parameter set which can model non-Zero higher-order 
cumulants beyond a usual “mean' and “covariance.” 

3. The GVM distribution can account for correlation 
between the Cartesian random vector xeR" and the cir 
cular random variable OeS.. 

4. The level sets of the GVM distribution can be generally 
“banana' or “boomerang shaped so that a more accu 
rate characterization of the uncertainty in a space 
objects state in equinoctial orbital elements can be 
achieved. 

5. The GVM distribution can reduce to a multivariate 
Gaussian PDF in a suitable limit. 

6. The GVM distribution can permit a tractable implemen 
tation of the general Bayesian nonlinear filter and other 
applications to Support advanced SSA. 

In clarification of the first condition, a function p:R'xIR -> 
IR is a probability density function (PDF) on the cylinder 
IR 'xS if 

1. p(x,0)>0 almost everywhere on IRXR, 
2. p(x,0+21)=p(x,0) almost everywhere on IR 'x R, , 

This definition extends the definition of a PDF defined on a 
circle. One example satisfying the above conditions is 

where VM (0:C.K) is the von Mises PDF defined by (8) and 
JN (x;L.P) is the multivariate Gaussian PDF given by 

(10) 
det(27tP) 

where LeR" and P is an nxn symmetric positive-definite 
(covariance) matrix. This simple example, though used as a 
starting point in constructing the GVM distribution, does not 
satisfy all of the conditions listed earlier. In particular, the 
desired family of multivariate PDFs should model correlation 
between X and 0 and have level sets possessing a distinctive 
banana or boomerang shape. 

To motivate the construction of the GVM distribution, 
consider two random vectors xeR" and yer" whose joint 
PDF is Gaussian: 

T P. 
Py 

P 
P psy-NH2. (11) 

Using the definition of conditional probability and the Schur 
complement decomposition, the joint PDF (11) can be 
expressed as 
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y; uy + P. P. (x - uy), 
= N (x; us, P.N. 

Py P. P. P. 

where 

One very powerful observation resulting from this Schur 
complement decomposition is that (12) defines a PDF in (x,y) 
for an (analytic) function g(x) and a symmetric positive 
definite matrix Q. In particular, if y is univariate and rela 
belled as 0, then 

defines a PDF on IR "x IR for an analytic function 0:IR "-> 
IR and a positive scalar K. To make it robust for a circular 
variable 0eS and hence define a PDF on the cylinder IR"xS, 
the Gaussian PDF in 0 can be replaced by the von Mises PDF 
in 0: 

The definition of the Gauss von Mises distribution fixes the 
specific form of the function 0(x) in (13) so that the PDF can 
model non-Zero higher-order cumulants (i.e., the banana 
shape of the level sets) but is not overly complicated so as the 
make the resulting Bayesian filter prediction and correction 
steps intractable. 

Definition Gauss Von Mises (GVM) Distribution 

The random variables (x,0)e IR'xS are said to be jointly 
distributed as a Gauss von Mises (GVM) distribution if their 
joint probability density function has the form 

= N (x; u, PM (8; 0(x), K), 
where 

N(x, ; u, P) = exp-its-by P'(x-1) det(27tp) 2 

M (8; 0(x), K) = 27tek Io (K) expl-2ssinie 0(x), 
and 

The parameter set (L, P. C. B. T. K) can be subject to the 
following constraints: 

LeR', P can be annxn symmetric positive-definite matrix, 
OleIR, BeR', T can be annxn symmetric matrix, and K-0. The 
matrix A in the definition of the normalized variable Z, can be 
the lower-triangular Cholesky factor of the parameter matrix 
P. The notation 

denotes that (x,0) can be jointly distributed as a GVM distri 
bution with the specified parameter set. 

It is noted that the function 0(x) appearing in the GVM 
distribution can be an inhomogeneous quadratic in X or, 
equivalently, the normalized variable Z. The use of the nor 
malized variable Z in the definition can be made to simplify 
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the ensuing mathematics and so that the parameters 3 and T 
are dimensionless. Additionally, the parameters B and T 
model correlation between X and 0. The parameter matrix T 
can be tuned to give the level sets of the GVM distribution 
their distinctive banana or boomerang shape. In Subsequent 
sections, it is demonstrated that the definition of the GVM 
distribution satisfies the remaining conditions listed at the 
beginning of the section. 

II. A. Relationship to Mardia and Sutton 
A related distribution defined on a cylindrical manifold 

proposed by Mardia and Sutton can be recovered starting 
from Equation (12). If x is univariate and relabelled as 0, then 

defines a PDF on R"xIR for any analytic function g:R-> 
R". A PDF defined on the cylinder IR "xS can be obtained 
by replacing the Gaussian PDF in 0 by the von Mises PDF in 
0 (and relabelling the other parameters) to yield 

One specific choice for the function g(0) is 

g(0)=ao-acos 0+b sin 0, (15) 

for some parameter vectors ao, a, be IR". 
The PDF (14) with g(0) specified by (15) can be a gener 

alization of the bivariate distribution defined on the two 
dimensional cylinder IR xS proposed by Mardia and Sutton. 
Their derivation also differs from that presented here in the 
sense that the authors start with a trivariate Gaussian distri 
bution and then “project it onto the cylinder. 

Though the Mardia-Sutton distribution can be used in 
place of the GVM distribution in estimation and other space 
situational awareness algorithms, it is noted that the param 
eter set in the former provides less control over the magnitude 
of the higher-order cumulants and the bending of the banana 
or boomerang shaped level sets. For these reasons, the GVM 
distribution is preferred since it overcomes these limitations. 
III. Elementary Properties 

This section lists mathematical and statistical properties of 
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nition stated in Section II and provides an outline of the 
derivation of non-trivial properties. These elementary prop 
erties are applied in Subsequent sections of the description. 

III.A. Mode 

The GVM distribution is unimodal on IR'xS with 

(u, a) = argmaxGV(x, 0; u, P., a, b, T. K). 
x.6 

III.B. Characteristic Function 

The characteristic function of the GVM distribution, i.e., 

i x+m 16 gym (6 m; H. P. a, b, , ) = Ele'" (16) 
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-continued 

for 8 e IR'm eZ is 

1 in(K) , n; it, P. a. B. T., K) = - – gy M (6 m; H. P. a. B. T. K) Vdet(I - in) lo(K) 
explicus + ma)- A's + mp) 
(I-iml) (A & + mp3)), 

where I denotes the nxn identity matrix and I is the modified 
Bessel function of the first kind of order p. 
To derive (16), the definition of the GVM distribution in 

conjunction with the definition of the characteristic function 
is applied to obtain 

GyM (6 m; H. P. a, b, T, K) = ? es' N (x;a, P) 

- M. v. 1 in (K) ; iga. in inG(x) 8 x; it, P 8 dy, ? N(x; u, P) o(K) 

This integral can be expressed in the form 

in(K) (x) 
pg. M. (6 m; H. P. a, b, T, K) = Varie?' dy, 
where 

g(x) = - ics - a)'P'(x - u)+im0(x) + iy 

E g(x) - ics - x.) A (I-iml)A'(x - x.), 

and 

= icus + ma)- (A's + mp)" (I-iml) (Ag+ mp). 

This decomposition of g(x) can follow by “completing the 
square.” The result (16) follows from known integration for 
mulas for integrands containing an exponential of a quadratic 
form and elementary properties of the determinant. 

III.C. Low-Order Moments 
If (x,0)-GVM(LL, P. C. B. T. K), then 

Ex = u, 

- tex 

Vdet(I - i) lo(K) 
EI e g = i(I - i) BEel, 

Ee pia - f'(- iD 'p 

ELe z: ) = ( – iT) - (I - iT) B3 (I-iT) Ele'), 
where ZA'(x-1) and P=AA'. These results follow from the 
characteristic function (16). 

III.D. Differential Entropy 
If (x,0)-GVM(u, P. C. B. T. K), then its differential entropy 

can be 

H(x, 0) = EI-ling VM(x, 0; u, P, Q, B, T, K) (17) 

=l in det(2tep + in 21 (K) = 5 in et(27teP) + ln( o(k))-ki. 
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III.E. Invariance Property 
If (x,0)-GVM(u, P. C. B. T. K) defined on IR "xS and 

W 1 18 

x = Lx +d, 0 = 0 + a + b x + x'C, (18) 
where L is an mxn matrix (with msn), de R", ae IR, be IR", 
and C is a symmetric nxn matrix, then 

defined on IR "xS, where 

(19) f = Lu + d. 

P = LPL, 

O 
O' (T + ATCA).Q. 
K. 

In these equations, Q can be an inxm matrix with mutually 
orthonormal columns and R can be an mxm positive-definite 
upper-triangular matrix such that QR=(LA). (The Q and R 
matrices can be computed by performing a “thin' QR factor 
ization of (LA)'.) Additionally, the lower-triangular 
Cholesky factor A such that P=AA' is A-R'. 

This result, which states that a GVM distribution remains a 
GVM distribution under transformations of the form (18), 
follows upon computing the characteristic function of the 
transformed random variables (X.6) (in analogy to the deri 
vation in Subsection III.B) and then identifying it with the 
characteristic function (16) possessing the parameters 
defined in Equations (19). 

III.F. Transformation to Canonical Form 
The transformation 

1 20 
g = A'(x-1), b = 9-a-B'z.- :"Tz, (20) 

reduces (x,0)-GVM(u, P. C. B. T. K) to the canonical or 
Standardized GVM distribution with PDF 

This result follows by noting that the transformation (20) is a 
special case of (18). 

III.G. Marginalization 
If (x,0)-GVM(u, P. C. B. T. K), then the marginal distribu 

tion of x is the Gaussian PDF N (x; L, P). This result follows 
immediately from the definition of the GVM distribution: 

p(x) = IgVMc, 6; u, P., a, b, T. K)de 

X, ) and The marginal distribution of (x,0), where X=(x, ... 
1smsn dim(X), is 
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where the transformed parameter set is specified by Equa 
tions (19) with a 0, b=0, C=0, d=0, and 

In this construction of the matrix L., e, is the nx1 vector where 
the j-th component is unity and all other components are Zero. 

III.H. Conversion between Gauss von Mises and Gaussian 
Distributions 
As K->OO and T->0, a GVM distribution in (x,0) becomes 

a Gaussian distribution in x=(x,0). Under these conditions, 

GVM(x, 0; u, P., a, b, T, K) & N(x; m, p), (21) 
where 

m= (22) 
C 

P = 7.7, 
A O 

A = v. 
The approximation (21) is justified by first noting that, for 

fixed x, the von Mises distribution VM (0; 0(x), K) becomes 
concentrated at the point 0-0(x) as K->OO. Thus, for large K, 

1 
7M (8; 0(x), K) = 27tek Io (K) exp-2ssin' 2 (6- 0(x) 

1 
St. i. exp- 5K(0 Oco 
= N (0, 0(x), 1 / K), 

noting that 

1 1 
lo(k)~e" / V2tk as K -> co and sin's brid as d -> 0; 

hence 
9 (x,0), PC, p.I.k)- N (xu, P).N (0:0(x),.1/k). (23) 

As T->0,0(x) tends to a linear function in X thereby reduc 
ing the right-hand side of (23) to a Gaussian in X and 0. 
The expressions for the mean in and covariance P in 

(22) of the approximating Gaussian in a (x,0) are derived as 
follows. First, define 

q9 (x,0)=-ln 9 (x,0u, Pop, Ik), 
(IN (a)--in N (ac; in P). 

The approximating Gaussian in (21) is the "osculating Gaus 
sian” defined as the Gaussian which is tangent to the GVM 
distribution at the mode. Specifically, the mean n is the 
mode of the GVM distribution, as specified in (22), and the 
covariance P is obtained by demanding equality between 
the second-order partial derivatives of 4gM and GN evalu 
ated at the mode. Indeed, 

32 iN = p (24) 
0 x 0x7 -m 

dasyM 
= At 1 + ki38)A d x d x (x.9)=(u.a.) (1 + Kf88)A', 
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-continued 
32 il’ v. = -KA b, Ö6 day (a,a)=(i.a.) KA ps 

dasyM K. 5 
d62 (.9)=(u a) 

hence 

AT (I + kbp)A -KATB 
-kb A K 

P = 
10 

Inverting (24) using the block matrix inversion lemma yields 

15 
AA Af3 (25) 

'p A ple. , 

Finally, computing the lower-triangular Cholesky factor 20 
All of the covariance (25) results in the expression in (22). It 

is noted that the expressions in (22) can also be recovered 
from (23) by setting T-0 and combining the two Gaussian 
PDFs into a single Gaussian PDF inac by way of a “complet 

25 ing the square' operation. 
In Summary, Equations (21) and (22) indicate how one can 

convert to and from a GVM distribution and a Gaussian. The 
approximation of a Gaussian distribution in X=(x,0) by a 
GVM distribution with T=0 becomes exact in the limit as the 
standard deviation in 0 tends to Zero. The approximation of a 
GVM distribution by a Gaussian becomes exact as K->OO and 
T->0. In any case, the equations provide an approximation 
of a GVM distribution by the osculating or tangent Gaussian 

30 

distribution at the modal point. 35 
III.I Mahalanobis von Mises Statistic 

Given (x,0)-GVM(u, P. C. B. T. K), the Mahalanobis von 
Mises statistic is defined by 

40 

. 1 (26) 
M(x, 6; u, P, Q, B, T, K) = (x - u) P(x - it) +4ksin (0 - O(x)), 

45 
where 

1 
0(x) = a + ps': -- i:'Tz, 

50 
:= A'(x - u), 
and 

P = AA. 

55 

For large K. M-x(n+1), where x(v)is the chi-square distri 
bution with V degrees of freedom and '-' means “approxi 
mately distributed.” The statistic (26) is analogous to the 
Mahalanobis distance for a multivariate Gaussian random 60 
vector x-N(LL, P). Indeed, the first term in (26) is precisely this 
Mahalanobis distance. Like the classical Mahalanobis dis 
tance, the Mahalanobis von Mises statistic provides a mecha 
nism for testing if some realization (x,0) from a GVM 
distribution is statistically significant. Additional details on 65 
the interpretation of the Mahalanobis von Mises statistic are 
provided following the derivation below. 

20 
The derivation of the distribution of M given that (x,0) are 

jointly distributed as a GVM distribution is as follows. Apply 
ing the transformation (20) to canonical form yields 

1 
M = x3 + 4Ksin 5th, 

where now Z-N(0, I) and p-VM(0.K) with Z, and cp indepen 
dent. Therefore, 

M=x(n)+Y., 
where 

1 
Y. = 4Ksin 5th 

and is independent of the x(n) random variable. It follows 
from elementary probability theory that the PDF of Y is 

py, (y) = k tek Io(k) Vy(4x-y) 
O, otherwise. 

(27) 
0 < y < 4K, 

Noting that I(K)-e'/V2tk and Vy(4k-y)-2Vky as K->oo, it 
follows that 

py (y) ~ Vy P21 (y). 

In other words, the PDF of Y converges (pointwise) to the 
PDF of a chi-square random variable with one degree of 
freedom as K->OO. It can also be shown that the cumulative 
distribution function (CDF) of Y converges uniformly to the 
CDF of X(1) as K->00. Therefore, for large K.Y.,x*(1) and 
hence M-x(n+1). 

In principle, one can derive the exact PDF of M using the 
standard change of variables theorem in conjunction with the 
PDFs of the chi-square distribution and (27), though an ana 
lytic expression for the resulting convolution is intractable. In 
practice and in the context of the present invention, K is 
sufficiently large so that the approximation of Y, by a X (1) 
random variable (and hence M by X(n+1)) is justified. 

III.I.i. Interpretation 
The interpretation of the Mahalanobis von Mises statistic 

(26) can be understood by first considering the more general 
setting of a multivariate random vector X with Support on a 
differentiable manifold M and a PDF of the form p(x)= 
ef. Suppose a point x-e M is given and one wishes to 
test the null hypothesis Ho that X is not a statistically signifi 
cant realization of the random vector X (i.e., X is a represen 
tative draw from X). The p-value for a one-sided test is 

where S2={xlf(x)> f(x)=C}. Smaller p-values imply that 
the realization X. lies farther out on the tails of the PDF (see 
FIG. 8a). The null hypothesis Ho is rejected at the significance 
level C. (typically 0.05 or 0.01) if p<C. FIG. 8b shows the 
setup for the analogous two-sided hypothesis test. For a given 
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significance level C., one determines the contours C, and C, 
such that 

? effix - ? e-relay=ia, 5 
(L (U 2 

where S2={x|f(x)<C} and S2={x|f(x)>C}. (Note that the 
shaded region in FIG. 8b has probability C.) A two-sided test to 
with significance level a rejects the null hypothesis Ho if 
jf(x)<C, or f(x)>C. 

Specializing the one-sided statistical significance test to 
the Gauss von Mises distribution, suppose (x,0)-GVM(u, P. 
C. B. T. K) and a realization (x,0)e IR'xS is given. For this 15 
Case, 

f(x, 0) = -2ling VAt(x, 0; u, P., a, b, T. K) 

where M is the Mahalanobis von Mises statistic ((26)). The 
integration region S2, in (28) is 

25 

M(x, 6; it, P. a. 3. T. K)}. 30 

Substituting this information into (28) yields 

40 

The justification of the approximation in the last line is given 
in the discussion proceeding Equation (27). Thus, the result 
ing p-value can be computed by evaluating the complemen 
tary cumulative distribution function (i.e., tail distribution) of 

(n+1) at the Mahalanobis von Mises statistic (26) evaluated 
at the realization (x,0). 

III.J. Asymptotic Expansions 
In order to avoid numerical overflow issues, large Kasymp 

totic expansions can be used for some expressions containing 
exponentials and modified Bessel functions in K. In what 
follows, expansions are accurate to 16 significant digits for 
Ke500. 

For the normalization constant appearing in the definition 
of the von Mises PDF in (8), 

45 

50 

55 

In(27te* I 2it 1 1 1 25 13 n(27te o(s) sin() + (1 + i + i + 1 + (29) 1073 

640x4 } 
60 

For the K-dependent terms in the expression of the differential 
entropy in (17), 

In(270 (K)) - A. St. (30) 6s 

22 
-continued 

3 25 65 3219 l 27te 1 1 
in K + ( 4 242 323 6404 

For the weights and nodes used in the Gauss von Mises 
quadrature formulas (derived in Section IV), 

3 151 

1 (1++ i + B(k)? 1 K 16k2 B2 (K) 
1B (k) - B(k) 6 48x2 267 16967 arccos(-1) (31) 

83 1284 

(i+ i + 43. 443 2523 St. V 4K 160k2 896k3 2048x4 (32) 
K 34.0453 11584095 

901125 851968-6 ) 

IV. Gauss von Mises Quadrature 
The Julier-Uhlmann unscented transform or the more gen 

eral framework of Gauss-Hermite quadrature enables one to 
compute the expected value of a non-linear transformation of 
a multivariate Gaussian random vector. In this section, these 
methodologies are extended to enable the computation of the 
expected value a non-linear transformation of a Gauss von 
Mises (GVM) random vector, thereby providing a general 
framework for Gauss von Mises quadrature. The quadrature 
formulas are subsequently used in the prediction step of the 
GVM filter developed in the next section. The GVM quadra 
ture framework is also useful for extracting supplemental 
statistics from a GVM distribution. For example, if a space 
objects orbital state is represented as a GVM distribution in 
equinoctial orbital element space, one can compute the 
expected value of the object's Cartesian position and velocity 
or the covariance in its position and Velocity. 

Given (x,0)-GVM(u, P. C. B. T. K) and a function f: IR'x 
S-> IR, an approximation is sought for 

As in classical Gaussian quadrature, the framework of Gauss 
Von Mises quadrature approximates (33) as a weighted Sum of 
function values at specified points: 

W 

X w.e. f(x, 0). 
i=1 

The set of quadrature nodes, sometimes called sigma points, 
{(x,0)}, and corresponding quadrature weights 
{w} ^ can be chosen so that (34) is exact for a certain class 
of functions. In the derivation of the GVM quadrature weights 
and nodes, the Smolyak sparse grid paradigm can be used so 
that, for a specified order of accuracy, the number of nodes 
increases polynomially with the dimension in thereby avoid 
ing the so-called “curse of dimensionality.” In particular, the 
number of quadrature nodes (and hence function evaluations) 
increases linearly in the dimension n for the third-order rule 
derived in Subsection IV.A and increases quadratically in n 
for the fifth-order rule derived in Subsection IV.B. Higher 
order GVM quadrature rules are discussed in Subsection 
IV.C. 
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IV.A. Third-Order Method 
Without loss of generality, the method can be restricted to 

quadrature using the canonical GVM distribution as the 
weighting function: 

Indeed, if considering the general quadrature problem in 
Equation (34), the nodes (x, 0) can be recovered from the 
nodes (Z. (p) of the canonical problem (35) through the 
transformation (20): 

1 
x = u + Aze, 0 = b + 0 + f2., + 55, Tzo, 

In what follows, the following notation is used. Let Se R. 
me(-L.J. and 

For the third-order method, it is demanded that the approxi 
mation (35) be exact for all functions of the form 

where ao, a, aeR, Bo is any symmetric nXn matrix, and g is 
any function Such that g(Z.(p)=-g(-Z.cp) or g(Z.(p)=-g(Z.- 
(p). It is claimed that this objective can be achieved with the 
quadrature node set 

N = NUIN"UUN.", (37) 
i=l 

for some choice of parameters S and m, and a quadrature rule 
of the form 

woo X 
(d)-N' 
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24 
-continued 

wjo X fic) voy X f(z, d). 

Indeed, to make (38) exact for functions of the form (36), it 
suffices to impose the condition that (38) be exact for the basis 
functions listed in Table 1. 

The corresponding constraints on the quadrature weights and 
the parameters and mappearing in the quadrature nodes are 
also listed in the table. It is noted that these constraints follow 
from the assumed quadrature rule (38) in conjunction with the 
characteristic function (16) or the low-order moments listed 
in Section III.C. Solving the five constraint equations in Table 
1 for Woo Wo Wo. S. and myields 

g = V3, (39) 
B2 (K) 
2B1 (K) n = arccost 1), 

B(k) 
"70 4B, (6) - Bte 
W00 1 - 2who 2nwg0. 

where B(K)=1-I(K)/I(K). For large K, the asymptotic 
expansions in (31) and (32) should be applied to compute the 
quantities containing the modified Bessel functions. 

In summary, the third-order GVM quadrature rule is (38) 
with the nodes and weights specified in (37) and (39). 

It is noted that the number of quadrature nodes in the set 
(37) is 

Thus, the number of nodes increases linearly with the dimen 
sion n. Further, this is precisely the same number of nodes 
(sigma points) used in the unscented transform (which is a 
third-order Gauss-Hermite quadrature method) in a Cartesian 
space of dimension n+1. 

IV.B. Fifth-Order Method 
The derivation of the fifth-order GVM quadrature rule is 

similar to that of the third-order rule. It is demanded that the 
approximation (20) be exact for all functions of the form 

l, like 
3. do i to 3:2. - C6 3:2:2, 3 f(z, (i) ( +5b833, +3 )+ (40) 

l, i. 
(al -- ibiskos + a2cos2d +g (, i.). 

where the coefficients are arbitrary and g is any function Such 
that g(Z.(p)=-g(-Z.cp) or g(Z.(p)=-g(Z.-(p). (The Summation 
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convention is implied between repeated upper and lower indi 
ces.) It is claimed that this objective can be achieved with the 
quadrature node set 

(41) 
U NS, 

for some choice of parameters S and m, and a quadrature rule 10 
of the form 

42 If N 30, DVM (; 0, oftcoded:s 9. 
woo X f(3. d)+wo X f(z, (b)+ 

(d)-N' (d)-N' 

woX X f(z, d) + weX X f(z, d) + 2O 
'' (a)-N'- '-' (-)-N'- 

wg X X f(z, (i). 
(i,j)ep (a)-N' 25 

Indeed, to make (42) exact for functions of the form (40), it 
suffices to impose the condition that (42) be exact for the basis 
functions listed in Table 2. 

26 
-continued 

B(k) 
wo = (1-) 4B1 (K) - B2 (K) 
woo = 1 - 2wo - 2nwgo - 4nwen - 2n(n - 1)ws, 
where 

B. (K) = 1 - I (K)f lo(K). 

In summary, the fifth-order GVM quadrature rule is (42) 
with the nodes and weights specified in (41) and (43). 

It is noted that the number of quadrature nodes in the set 
(41) is 

it. N=1 +2+2n+ 4 +4. 
= 2(n+1) + 1. 

Thus, the number of nodes increases quadratically with the 
dimension n. Further, this is precisely the same number of 
nodes obtained using the sparse grid fifth-order Gauss-Her 
mite quadrature method of GenZ and Keister in a Cartesian 
space of dimension n+1. 

IV.C. Higher-Order Methods 
It is briefly noted that that GVM quadrature rules can be 

generated to arbitrarily high-order using classical Gauss-Her 
mite quadrature formulas and the discrete Fourier transform. 
Indeed, 

TABLE 2 

f(z, p) Constraint 

1 

woo +2wo +2nwgo + 4nw: + 4. 2 ve = 1 

cos p 
woo +2cosmwo +2nwgo + 4ncosirway + 4. 2 wo = I(K) fo(K) 

cos 2p 

The corresponding constraints on the quadrature weights and so 
the parameters and mappearing in the quadrature nodes are 
also listed in the table. Solving the seven constraint equations 
in Table 2 for Woo Wo Wo. We Wes. S. and m yields 

55 

g = V3, (43) 
B2(k) 

n = accost?, 1). 
1 
- 60 wg = 3 

1 B1 (K) 
"in 64B, (6) - Bte 

2 in 1 B(k)? 
wgo = - - , 65 9 18 3 4B1 (K) - B (K) 

woo +2cosmwo +2nwgo + 4ncosirway + 4. 2 wo = I2(K) fo(K) 

VM. 0, K) N (; 0, I)f(z., d)dz, did as 
-3 R2 

W 

X, SIVM. 0, orig, )do, 

where {w', ‘ and {Z'), Y are the canonical n-di 
mensional Gauss-Hermite weights and nodes. These quadra 
ture weights and nodes can be generated using, for example, 
the sparse grid framework of GenZ and Keister, to yield an 
approximation to any desired order of accuracy. For each = 
0,..., N, perform a discrete Fourier transform on f(z'.(p) 
and introduce the notation 
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i 

f(3), b)s X Fek, 
k=-i-f 

where 

1 i 
GH fik - 21 X fig, he her, 

=-ji. 

27tf the F2 . . 
Therefore, 

i 
lik (K). 
I,() i 

In the context of the present invention which makes use of 
GVM quadrature, it is observed that there is little benefit in 
using any quadrature rule beyond the simple third-order 
method. 
V. Uncertainty Propagation 

This section presents the method to implement the predic 
tion step of the Bayesian non-linear filter using the Gauss von 
Mises (GVM) probability density function (PDF) as input. 
Effectively, the new algorithm provides a means for approxi 
mating the non-linear transformation of a GVM distribution 
as another GVM distribution. The GVM quadrature rules 
developed in the previous section play a key role in the com 
putation. In analogy to the unscented transform applicable to 
Gaussian PDFs, quadrature nodes can be deterministically 
selected from the initial GVM distribution and then acted on 
by the non-linear transformation. The transformed quadra 
ture nodes can then be used to reconstruct the parameters of 
the transformed GVM distribution. One application of this 
methodology can be the propagation of a space object's state 
uncertainty under non-linear two-body dynamics, which pro 
vides improved prediction capabilities of the object’s future 
location and characterization of its orbital uncertainty at 
future times. It is shown in the EXAMPLE that uncertainty 
propagation using the new GVM filterprediction step for this 
application can be achieved by propagating 13 quadrature 
nodes, the same number used in the standard unscented Kal 
man filter (UKF). Moreover, the new method is shown to 
maintain a proper characterization of the orbital state uncer 
tainty for up to eight times as long as the UKF. 

The organization of this section is as follows. In Subsection 
V.A., the preliminary notation is defined followed by discus 
sions on how state propagation under a non-linear system of 
ordinary differential equations (ODEs) fits into the general 
framework. In Subsection V.B, the GVM filterprediction step 
is motivated followed by the complete algorithm description 
in Subsection V.C. In Subsection V.D., two different online 
metrics are proposed which allow the operator to validate the 
characterization of the transformed PDF by a GVM distribu 
tion. In Subsection V.E., it is shown how the inclusion of 
additional uncertain parameters or stochastic process noise 
can be treated within the same framework. Finally, in Sub 
section V.F. it is shown how a “mixture version' of the GVM 
filter prediction step can be formulated, in analogy to the 
Gaussian Sum (mixture) filter to provide proper uncertainty 
realism in the most challenging scenarios. 
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V.A. Preliminary Notation 
Let (x,0)-GVM(u, P. C., B, T, K), d: R "xS-> IR "xS be a 

diffeomorphism (i.e., a bijection on IR "xS with a smooth 
inverse), and (x, 0) be defined such that 

where p denotes any constant non-stochastic parameters. The 
inverse of (44) is denoted as 

Thus, given the GVM random vector (x,0) and a diffeomor 
phism d, the objective is to approximate the joint PDF of 
(x,0) by a GVM distribution and quantify the fidelity of this 
approximation. 
The first-order system of ODEs, 

naturally gives rise to a family of diffeomorphisms. For a 
given initial condition a (to) Xo, the solution of (46) is 
denoted as 

3 (t)=d(oitot), (47) 

which maps the state aco at Some initial epoch to the state at a 
future time. (Existence and uniqueness of Solutions is 
assumed on the interval to.t.) In this context, d is called the 
solution flow and is of the form (44) where the parameter 
vector p contains the initial and final times. The inverse solu 
tion flow is denoted as 

which maps the state ac (t) at time t to the state X at Some past 
time to. If the initial conditionX is uncertain and described by 
a PDF, then Equation (47) dictates how this PDF is trans 
formed to a future epoch. 
The dynamics governing the two-body problem in orbital 

mechanics are of the form (46) where if encodes the force 
components (e.g., gravity, atmospheric drag, etc.) and, typi 
cally, the state c is six-dimensional Cartesian Earth Centered 
Inertial (ECI) position-velocity coordinates. (The choice of 
inertial coordinates can be made so that Newton’s laws hold.) 
As argued in Section I.A, it is advantageous to represent 
orbital states and uncertainties in equinoctial orbital element 
(EqOE) coordinates because the solution flow (47) in such 
coordinates, denoted as d'', is approximated more closely 
as a transformation of the form (18) which maps a GVM 
distribution to a GVM distribution. Computationally, one can 
implement the map d''' by transforming the ODEs 
expressed in the natural ECI coordinates to a system of ODEs 
in EqOE space (see Equation (2)) and thus propagating states 
directly in EqOE space. In an equivalent approach, one can (i) 
take the initial condition aco''' in EqOE space and convert 
it to an initial condition aco in ECI coordinates, (ii) propa 
gate this initial condition using the solution flow d'' with 
respect to ECI coordinates to obtain the propagated ECI state 

PC, and (iii) convert a ACI back to EqOE coordinates to 
yield the propagated EqOE state e '''. Thus, d' is a 
composition of the three maps described in Steps (i)-(iii). 
This approach is sometimes preferred when using a commer 
cial orbital propagator utilizing input in ECI coordinates. In 
Summary, the following diagram commutes: 
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(48) 
EaOE dio EgoE 

| d'EC | 

In what follows, the following notation is used. Given 10 
(x,0)e IR "xS and a diffeomorphism d:R"xS->R"xS, the 
following definitions are used. 
d:R"x S->R" is the projection of d on R". 
de:R"xS-> S is the projection of d on S. 
8,d:R"xS->IR "" is the Jacobianofop, with respect tox: 

8,de:IR "xS-> IR" is the gradient of do with respect to X: 

Óda (, 8) 
dé 

d da(x, 8) = 
Óda (, 8) 

d 

8,d. IR"xS-> IR'" is the Hessian of do with respect to 
X 

ada(6, 6) ada(6, 6) 
d£108 dédé, 

6 da(x, 0) = : : 
ada (6, 6) ada (6, 6) 
dédé Ö8,68, 

V.B. Motivation 
Consider the random variables (x,0) defined by 

where d: IR"xS-> IR"xS is a diffeomorphism and (x,0) 
-GVM(u, P. C. B. T. K). By the change of variables theorem 
for PDFs, it follows that 

W t W W 49 p(x, 0) = de SVM (Y, (i, 8; p), Ya?i, 8; p), u, P, Q, B, T, K), (49) 

where is the inverse of CD and at =(X.6). The transformed 
PDF (49) is a GVM distribution in (x,0) if the transformation 
d (or ) is of the form (18). In general, the non-linear trans 
formation of a GVM distribution is not a GVM distribution. 
In such cases, the objective of the GVM filter prediction step 
is to compute an approximate GVM distribution such that 

p(i,0)-9 (5.6;P.C.B.T.,k). (50) 
One way to achieve this objective is to approximated as a 
Taylor series about the modal point (x,0)-(L.C.) and then 

30 
match the Taylor coefficients with the coefficients in the 
transformation (18). It follows that 

5 L = d.d. (t, a), (51) 

d = db (u, a ) - d.d. (it, a)pt, 

T 1 Ta2 a = deg(u, a ) - a - d.de (u, a u + sh Öde (u, a pu, 

b = 0, de (u, a) - d.de (u, a)u, 
C = d.de (u, a ), 

where, for notational convenience, the dependence of db and 
15 its derivatives on the non-stochastic parameter p is Sup 

pressed. Substituting (51) into (19) yields 

B=Q/B+A3...do(I.C.)).f=Q/T+A3,’do(I.C.) 
AIG, K-K, 

where Q is annxnorthogonal matrix and R is annxin positive 
definite upper-triangular matrix such that QR=(LA)'. It fol 
lows that Q=A'8,d,(LLC)'A' where A is the lower-triangu 
lar matrix such that P=AA'; hence 

2O (52) 

An equivalent form of the above equations for Band T are 
used in the next section which expresses all partial derivatives 
ofd with respect to the standardized variable ZA'(x-u). By 

35 the chain rule, 
3,do-A'3dpo.3, do-A'3°doA',3,p.-3dB.A. 

Substituting the above equations into (53) yields 

40 - - 

B-A'3d.(I.C.) B+3 do(I.C.), 

T=A '3d.(I.C.)|T+3°do(I.C.)3d.(I.C.) A.K=K. (54) 
It is noted that Equations (53) or (54) are analogous to those 

45 used in the prediction step of the extended Kalman filter 
(EKF) for the linearized propagation of a multivariate Gaus 
sian distribution. Indeed, if x-N(LLP), d: R ? R* then, 
under weak non-linear assumptions in d, X=d(x)-N(,P), 
where 

50 

While the analogous “EKF-like' prediction derived in Equa 
tions (53) provides an approximate GVM distribution to a 
non-linear transformation of a GVM random vector, the pro 
posed algorithm developed in the next Subsection provides a 
more accurate approximation while avoiding the direct com 
putation of the partial derivatives of the transformation d. 

V.C. Algorithm Description 
FIG. 1 is a flowchart illustrating an exemplary process for 

60 transforming a Gauss von Mises (GVM) distribution under a 
non-linear transformation and approximating the output as a 
GVM distribution. In this example, there are two inputs 100: 
(i) a random vector (x,0)e IR "xS distributed as a GVM distri 
bution with parameter set (L, P. C. B. T. K), and (ii) a diffeo 
morphism do: IR'xS ->R'xS. Where, as described in detail 
above. (L.C.) is the mode of the GVM distribution (i.e., the 
state with the maximum likelihood); P is the covariance of x: 

55 
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K quantifies concentration in the angular variable 0; B beta 
characterizes correlation between X and 0; and T models 
higher-order cumulants (which give the level sets of the GVM 
distribution their distinctive “banana’’ or “boomerang” 
shape). The output 105 can be an approximation of the dis 
tribution of (x,0)-d(x,0) as a GVM distribution with param 
eter set (LL. P. C. B. T. K). The algorithm has four main steps 
summarized below: 

Generate 101N quadrature nodes {(x,0), Y from the 
input GVM distribution and compute the transformed 
quadrature nodes (x,0)-P(x,0), for i=1,..., N: 

Recover 102 the parameters l and Pof the transformed 
GVM distribution from the transformed quadrature 
nodes computed in Step 101 using the appropriate Gauss 
Von Mises quadrature rule; 

Compute 103 approximations of c, B, and T, denoted as c, 
B. and T, using Equations (54) in conjunction with suit 
able approximations of the partial derivatives of d. and 

Set 104 K-K and recover the parameters C, B, and T by 
Solving the non-linear least squares problem 

(55) 

(a, B, r) = argmin 
6.fs.f 

W 2 

M(x, 0; u, P. a, b, T, K) - M(i., 8: it, P. 6, f, f, R), 
i=1 

where M is the Mahalanobis von Mises statistic (26). 
These four steps 101, 102, 103, and 104 are described in 

more detail below including discussions on how they can be 
specialized to the case when d is the solution flow (in equi 
noctial orbital element coordinates) corresponding to the 
two-body problem in orbital mechanics (henceforth referred 
to as the “two-body problem”). 

At step 101, using either the third, fifth, or higher-order 
GVM quadrature rule derived in Sections IV.A., IV.B, and 
IVC, respectively, first generate N quadrature nodes {(Z. 
(p)}, with respective weights {w}, , corresponding to 
the canonical GVM distribution. Next, use these canonical 
quadrature nodes to generate quadrature nodes corresponding 
to the input GVM random vector (x,0)-GVM(u, P. C. B. T. K.) 
according to 

Xc = u + Azor, 
T lf 

6 = do + 0 + f3' zo + 53, Tzai. 

for i=1,..., N. Finally, compute the transformed quadrature 
nodes (x,0)=d(x,0), for i=1,..., N. 

In the case of the two-body problem, the transformed 
quadrature nodes can be generated by propagating each 
quadrature node (X.6), representing a state in equinoctial 
orbital element space, from a specified initial time to a speci 
fied final time under the underlying dynamics. This generally 
can be accomplished using the numerical Solution of a non 
linear system of ordinary differential equations. Additional 
details are discussed in the paragraph preceding Equation 
(48). 
At step 102, the transformed parameters and P are given 

by 
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Using the quadrature weights {wo-' and the transformed 
quadrature nodes {(x,y,0)}, \ generated in Step 101, the 
above expected values can be approximated using the frame 
work of Gauss von Mises quadrature developed in Section IV: 

W 

P =X w. (i., -a)(ii., -a)". 

The lower-triangular Cholesky factor of P. satisfying P=AA', 
can be used in Subsequent computations. 
At step 103, the parameters c, B, and T are approximated as 

C, B, and T using Equations (54): 

It is noted that (L.C.) is itself a quadrature node corresponding 
to the canonical node (Z(p)=(0,0). Hence, d. is recovered. The 
partial derivatives of d in the expressions for B and fare 
approximated using a two-point central difference scheme 
(for the first-order derivatives GdD and GdD) and a three 
point central difference scheme (for the second-order deriva 
tives & do). Shown below are examples using a scalar func 
tion f: 

f'(x) as 2. 

f'(x) as g2 

The value used for S depends on the GVM quadrature rule 
used to generate the quadrature nodes. For the third and 
fifth-order methods, S-V3, as given by Equations (39) and 
(43). No additional function evaluations of d are required in 
these central difference calculations since they only make use 
of the transformed quadrature nodes {(x,y,0)}, '. It is 
noted that the use of numerical approximations for the partial 
derivatives of d can be diverted if it is computationally fea 
sible to calculate them directly. 
When specialized to the two-body problem, some addi 

tional assumptions can be made in this step to reduce com 
putations. If the third-order GVM quadrature method is 
assumed, then the N=13 canonical sigma points can be enu 
merated as 

() () () g g () () () () () () () () 
() () () () () g -g () () () () () () 

Xo1 . . . XO13 () () () () () () () g -g () () () () 
|- () () () () () () () -g () () 

() () () () () () () () () () () g -g 
0 m -n () () () () () () () () () () 
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where S and mare specified in (39). Then, 

6. Vors 

8-8, 
1 W 

a ba?e, a) sat (dos - Goo 
Goro -6. 
6 - 0 

0 - 20 + 0 () () () () 
O O) () () () 

0 deg(u, a) set O O) () () () 
O O) () () () 

O O) () () () 

and de(LLC)–6. Further, the approximation GdDys I is 
assumed. (These approximations are exact under the assump 
tion of unperturbed two-body dynamics in (5)). Thus, 

At step 104, the hatted parameters c, B, and f computed in 
Step 103 can be approximations to the “optimal” parameters 
C. B. and T characterizing the output GVM distribution. In 
this step, the hatted parameters can be “refined by solving a 
non-linear least squares problem which is motivated as fol 
lows. Define 

It is noted that p is the approximate GVM distribution of the 
output using the hatted parameters, while p is the “exact 
PDF, as given by (49), but with the assumption that the deter 
minant factor is unity (i.e., d is Volume preserving). It is 
acknowledged that this is suboptimal (only if d is not volume 
preserving) though, in the context of the present invention, it 
is observed that the largest deviations from unity in the deter 
minant factor are on the order of 10' for scenarios with the 
strongest non-conservative forces. 

In this refinement step, the approximations of the hatted 
parameters can be improved by “matching the approximate 
and exact PDFs in (57) and (58) at the N transformed quadra 
ture nodes {(x,0), Y. One way to accomplish this objec 
tive is to study the overdetermined system of algebraic equa 
tions 

p.(i.6) p.(6), i=1,..., N, 
ind, B, and T. Instead, the analogous equations in log space' 
are used by defining 

where (X.6.) denotes the modal point. It follows that 
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where M is the Mahalanobis von Mises statistic (26). Now set 
K=K (see (53) or (54)) and solve the overdetermined system of 
algebraic equations 

for d. B. and f, in the least squares sense. This leads to the 
optimization problem (55) which can be expressed in the 
equivalent form 

(59) 

Methods for Solving non-linear least squares problems, such 
as Gauss-Newton, full Newton, and quasi-Newton updates, 
along with globalization methods such as line search and trust 
region methods including Levenberg-Marquardt, are efficient 
and mature and will not be discussed further here. It is noted 
that the hatted parameters computed in Step 103 can be used 
as a starting iteration. 

For the two-body problem, it is proposed to optimize over 
the parameters C, B, and the (1,1)-component of T. (The 
largest changes in the initial parameter matrix T to the trans 
formed matrix T is in the (1,1)-component.) To facilitate the 
solution of the non-linear least squares problem (59) with 
these specializations, it is useful to note the partial derivatives 
of the residuals r: 

= 2ksind, 
C 

Ör 1 
= 2Ksindi, 

8 B 
Ör W W 2 

– = Ksind (3), dT11 

It is noted that the optimization problem (59) is numerically 
well-conditioned and, for the case of the two-body problem, 
is inexpensive to solve relative to the propagation of the 
quadrature nodes. 

V.D. Performance Metrics 
In this subsection, two different metrics are proposed 

which allow the operator to assess online when the non-linear 
transformation of a GVM distribution is not well-represented 
by a GVM distribution. The first metric, given by Equation 
(61), is based on the differential entropy and was popularized 
by DeMars et al. in their design of an adaptive Gaussian 
mixture filter. While the entropy has a nice information-theo 
retic interpretation and is straightforward to apply, it is only 
applicable to transformations which are Volume preserving. 
In the context of the two-body problem in orbital mechanics, 
Volume preserving transformations can be induced generally 
in the case of pure (conservative) gravity flows (solar radia 
tion pressure is one exception). The second metric, given by 
Equation (62), is valid for general (non-volume preserving) 
non-linear transformations and can be based on the Mahal 
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anobis von Mises statistic. Both metrics provide a tool to 
validate the GVM propagation algorithm in the previous sub 
section. If a breakdown is found to occur, a higher-fidelity 
method can be triggered such as one that uses a mixture of 
GVM distributions to more accurately characterize the trans 
formed PDF. Additional details are provided in Subsection 
V.F. 

V.D.i. Differential Entropy 
Let X denote a random vector defined on a manifold 

JM with corresponding PDF p(x). The differential entropy 
of x is defined by 

If do: M -> M is a diffeomorphism that is also volume pre 
Serving, i.e., 

de?' = 1 e = 1, 
for all xe M, then it follows from the change of variables 
theorem for PDFs that H(x)=H(X), where X=d(x). In other 
words, the differential entropy is invariant under a volume 
preserving diffeomorphism. 

If (x,0)-GVM(u, P. C. B. T. K), then its differential entropy 
can be given by the expression in (17). This expression can be 
used to validate the approximation (x,0)-GVM(u, P, d, B, T, 
K), where (x,0)=d(x,0) and d is a volume preserving diffeo 
morphism on R"xS. Indeed, any deviation between the dif 
ferential entropy of (x,0) and (x,0) indicates a breakdown of 
the GVM assumption. To detect such deviations, one can 
evaluate the percentage change in differential entropy: 

AH(i.e. v. 8) = 100 (3, 8; x, 8) H(x, 0) 

If AH exceeds a user-defined threshold, then a breakdown in 
the GVM assumption is declared. 

V.D. ii. Mahalanobis von Mises Statistic 
Diffeomophisms are generally not volume preserving 

including those encountered in the two-body problem 
induced by non-conservative forces such as atmospheric 
drag. In such cases, to detect a breakdown in the GVM 
assumption discussed above and to thereby validate the GVM 
propagation algorithm in Subsection V.C., a metric is pro 
posed based on the Mahalanobis von Mises statistic (26) 
formed from the quadrature nodes of a GVM quadrature rule. 
The metric is motivated from the property that the Mahal 

anobis Von Mises statistic can be invariant under any trans 
formation of the form (18). Indeed, if (x,0)-GVM(u, P. C., B, 
T. K), and (x,0) is defined by the transformation (18), then 
(X.6)-GVM(, P. C. B. T. K), where the transformed param 
eters are given by (19). It follows that 

where M is the Mahalanobis von Mises statistic (26). 
Using the same input from the algorithm of Subsection 

V.C, define 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

36 
where {(x,0)}, Y are the N quadrature nodes generated 
from Step 101 of the algorithm. Equivalently, the expression 
for X can be written in terms of the canonical GVM sigma 
points {(Z(p), 'according to 

W 

Xu =XM(z, h; 0, 1,0,0,0, K). 
i=1 

Next, define 

(62) 

where {(x,0)}, \ are the transformed quadrature nodes 
computed from Step 101 of the algorithm and (, P. C. B. T. K) 
are the parameter set of the output GVM distribution com 
puted in Steps 102-104. 
By the invariance property of the Mahalanobis von Mises 

statistic discussed above, if XzX then the underlying 
transformation that produced the sigma points {(x,0), '' 
is not of the form (18). Hence, the PDF of the transformed 
random vector d(x,0) is not the output GVM distribution of 
the algorithm. Significant departures of the transformed PDF 
from a GVM distribution are manifested in deviations in X, 
from X. Therefore, if |X-X/X exceeds a user-defined 
threshold, then a breakdown in the GVM assumption is 
declared. 

V.E. Inclusion of Stochastic Process Noise 
The inclusion of uncertain parameters or stochastic process 

noise in the transformation of a GVM random vector can be 
treated within the algorithm of Subsection VC using state 
augmentation. Indeed, let d:R"x IR"xS -> IR "xS be a fam 
ily of diffeomorphisms in we IR "defined such that 

where p denotes any constant non-stochastic parameters. It is 
assumed that (y,0)-GVM(u, P. C. B. T. K), where y=(x,w) 
denotes the augmented random vector. In many filtering 
applications, it commonly assumed that the state vector (x,0) 
is independent of the process noise random vector w and that 
w is additive so that did enjoys the form 

In this formulation, Such assumptions on the additivity of the 
process noise and the independence of (x,0) with w can be 
relaxed. 

Introducing a slack variable w, consider the augmented 
transformation 

where y=(x,v) and 
(63) 

d(x, w, 8; p) 
* 

do (x, w, 8; p) 

It is noted that S2 is a diffeomorphism from IR''xS to 
R"xS. Therefore, the algorithm of Subsection VC can be 
applied in conjunction with the transformation (63) to yield 
an approximation of the joint PDF of (S.0) by a GVM distri 
bution. To obtain the joint PDF of (x,0), the slack variable w 
is marginalized out, noting from Section III.G that (x,0) is 
also a GVM distribution given that the output (S,0) is a GVM 
distribution. 
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V.F. Propagation of Mixtures 
According to one embodiment, the framework of this sec 

tion can be applied equally to the propagaAccording to 
another embodiment, the “adaptive entropy-based Gaussian 
mixture information synthesis” (AEGIS) methodology of 
DeMars et al, a Gaussian mixture filter in which the number 
of mixture components adapts according to the non-linearity, 
can be extended to mixtures of GVM distributions using the 
metrics defined in Subsection V.D. 
The random variables (x,0)e IR 'xS are said be jointly dis 

tributed as a mixture of GVM distributions if their joint PDF 
has the form 

(64) W 

i=l 

where the weights w, i=1,..., N, are positive and sum to 
unity. Under a diffeomorphism (x,0)=d(x,0;p), the joint PDF 
of (x,0) is approximated as 

(65) W 

p(i,0) sX w.gv M (3,0; i, P, G, B, f, R), 
i=l 

where the weights w, can be left unchanged and the parameter 
sets (LL., P., C, B, T, K,) of each of the transformed GVM 
components can be computed using the algorithm in Subsec 
tion V.C. In analogy to the prediction step of the Gaussian 
mixture filter, the procedure is parallelizable since each GVM 
component can be processed through the algorithm indepen 
dently of the others. The approximation in (65) can be pro 
vided each input GVM component gets mapped to a GVM 
component under the transformation do. The fidelity of the 
approximation can be validated using the metrics in Subsec 
tion V.D. 
A feature of the Gaussian mixture filter is an algorithm for 

choosing the component means, covariances, and weights of 
the initial input Gaussian mixture so that, when acted on by a 
non-linear transformation, the resulting output Gaussian mix 
ture is a proper characterization of the actual transformed 
PDF up to a prescribed accuracy. Noting that any (smooth) 
non-linear transformation is approximately linear in a Suffi 
ciently Small neighborhood, Gaussians with Smaller covari 
ances remain more Gaussian than those with larger covari 
ances under the non-linear map. Thus, a Gaussian mixture 
which is refined by approximating each component Gaussian 
by a finer Gaussian mixture exhibits better behavior under a 
non-linear transformation. Within the two-body problem, the 
refinement is usually performed along one coordinate direc 
tion, namely along the semi-major axis, because it is along 
this coordinate where the non-linearities are most severe. 

The refinement paradigm for Gaussians and Gaussian mix 
tures described above applies equally well to GVM distribu 
tions. Suppose it is desired to refine the GVM component 

1 r N(x; H, PVM (0; a + p': + stra, k), 
where ZA'(x-1). If the Gaussian component is refined into 
a Gaussian mixture according to 
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then it follows that p(x,0) is approximated as a mixture of 
GVM distributions of the form (64) where 

1 r -- - u virv, B = A A' (B+ iy), 
T = A A TAA, K, = K, vi = A'(u;-H), for i = 1,..., N. 

A feature of the AEGIS methodology for Gaussian mix 
tures is its ability to detect online when a single Gaussian or 
Gaussian mixture, after undergone a non-linear transforma 
tion, does not properly characterize the actual uncertainty. 
AEGIS uses the differential entropy (60) to detect departures 
from “Gaussianity” due to local non-linearities in the trans 
formation. If a sufficiently large departure is detected, it 
refines the Gaussian mixture into a finer Gaussian mixture in 
order to mitigate the non-linear effects and improve Subse 
quent accuracy. Thus, to adapt the AEGIS concept to mixtures 
of GVM distributions, the differential entropy metric (61), 
valid for volume preservation transformations, or the Mahal 
anobis von Mises metric (62), applicable to general non 
Volume preserving transformations, can be used to detect 
when additional refinement of the input mixture is required. 

Stated another way, predicting a location of an object in a 
multi-dimensional space having a plurality of (n+1) dimen 
sions can comprise reading 100 a prior probability density 
function defined by a set of parameters (L. P. C. B. T. K) and 
representing an uncertainty of the location of the object in a 
cylindrical manifold (IR"xS) of the multi-dimensional space 
and a diffeomorphism (D) of the cylindrical manifold (D: 
IR "xS -> IR"xS). A transformed probability density func 
tion defined by a set of parameters (, P, ci, B, T, K) and 
representing an uncertainty of the location of the object in a 
cylindrical manifold can be generated 101-104. The trans 
formed probability density function can be generated 101 
104 from the input probability density function under the 
diffeomorphism. The input probability density function and 
the transformed probability density function are both repre 
sented by Gauss von Mises distributions defined on the cylin 
drical manifold. The set of parameters representing the trans 
formed probability density function can then be provided 105 
as a representation of the predicted location of the object in 
the multi-dimensional space. In a SSA application, the dif 
feomorphism can be a solution flow induced from a system of 
ordinary differential equations describing two-body dynam 
ics of orbital mechanics for the object. Also in Such an appli 
cation, the input Gauss von Mises distribution can be gener 
ated from a plurality of radar, electro-optical, or infrared 
sensor observations. 

Generating the transformed probability density function 
can comprise computing 102 the parameters, and P from a 
sequence of function evaluations d(x,0), for i=1,..., N. 
where (Xo,0e). for i=1,..., N, are a chosen sequence of 
quadrature nodes on IR "xS and wherein the quadrature 
nodes (x, 0), for i=1,..., N, are generated 101 from a 
Gauss von Mises quadrature rule of a chosen order of accu 
racy in conjunction with the input parameter set (LL, PC, f, T. 
K). Additionally, K can be setto KK. The parameters C. B. and 
Tby C. B. and T. respectively, can be approximated 103 using 
expressions depending on the partial derivatives of the dif 
feomorphism db. The parameters C, B, and T can be selected 
104 according to: 
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arg min 
6, B, f 

W 

M(x, 6; u, P, Q, f3, T, K) - M(d(x, 6); fl. P, 6, B, f, r), 
= 

where M is a Mahalanobis von Mises statistic. In some cases, 
the accuracy of the transformed Gauss von Mises distribution 
can be validated using a differential entropy metric. Addition 
ally or alternatively, the accuracy of the transformed Gauss 
von Mises distribution can be validated using a metric based 
on a Mahalanobis von Mises statistic. 
VI. Data Fusion 

The problem of data fusion in multi-target tracking entails 
the combining of reports emanating from a common object in 
order to improve the state or understanding of that object. The 
“combining or “fusion' process is performed in a probabi 
listic manner based on the laws of conditional probability and 
Bayes' rule. Within a sequential non-linear filter, this opera 
tion is called the correction or measurement update step of the 
filter. 

This section shows how the correction step of the Bayesian 
non-linear filter can be specialized to the case when the prior 
state is a random vector represented by a Gauss von Mises 
(GVM) distribution and the update report, hypothesized to 
emanate from the prior, is either (i) another GVM random 
vector of the same dimension as the prior, or (ii) an observa 
tion related to the prior by a stochastic measurement model. 
In either case, the output of the Bayesian correction step can 
be a GVM distribution characterizing the fusion of the prior 
and the update. In addition, the process can furnish a statisti 
cally rigorous prediction error, a term appearing in the like 
lihood ratios for scoring the association of one report to 
another. The algorithm descriptions for Cases (i) and (ii) are 
provided in Subsections VI.A and VI.B, respectively, with 
respective block diagrams provided in FIGS. 2 and 3. 

VI.A. Full State Update 
FIG. 2 is a flowchart illustrating an exemplary process for 

fusing a prior state represented by a Gauss von Mises distri 
bution with an update report, wherein said update is another 
Gauss von Mises distribution of the same dimension as the 
prior according to one embodiment of the present invention. 
In the case of a full state update, the Bayesian non-linear filter 
correction step has two inputs 200: 

i.a random vector (x,0)e IR 'xS, called the prior, distrib 
uted as a GVM distribution with parameter set (u, P. 
C1, B, T, KI), and 

ii. a second random vector (x,0)e IR'xS, called the 
update, distributed as a GVM distribution with param 
eter set (Ll2, P2, C2, B2, T2, K2). 

There are two outputs 203: 
i.a random vector (x,0)e IR'xS, called the correction, dis 

tributed as a GVM distribution with parameter set (ur, 
P. C., fp, Tr. KF) which characterizes the fusion of the 
prior with the update, and 

ii. the prediction error used to score the association of the 
prior with the update. 

The algorithm can have two main steps Summarized below: 
Compute 201 the parameter set (up, P.C., fp, Tr. Kr) of the 

corrected GVM distribution from Equations (71) and 
(74); and 

Evaluate 202 the prediction error integral (75) using a 
GVM quadrature rule in conjunction with the output 
from Step 201 and Equation (76). 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

40 
These two steps 201 and 202 are described in more detail 
below including discussions on theoretical considerations. 

VI.A. i. Theoretical Considerations 
In a general setting, Suppose X and Y are random vectors 

defined on a manifold M with respective probability density 
functions (PDFs) p(x|I) and pyI, (y|I), where I, and I, 
denote any prior information associated with XandY, respec 
tively. Denote the joint PDF of X and Y (conditioned on their 
respective prior information) by p(x, y|I. I.) and the 
conditional PDF of X given Y=y, I, and I, by px|ri,I, (Xly, I. 
I). 
The PDF obtained by fusing the information of X with that 

ofY is defined to be the conditional PDF of X given Y=X and 
given the other prior information: 

Px-Yi, I, III)=px Yu, , Ix, II). 
By the definition of conditional probability, 

(66) 
PX-Y 1.1 (vil, ly) = PX,Ylly (X, X ly, ly), 

where the normalization constant c is given by 
c-pril, (x|I.l.)- pyri,(xxii.1)ds (67) 

Additionally, if (i) X is independent of Y given the prior 
information I, and I, (ii) X is independent of I, given I, and 
(iii)Y is independent of I, given I, then (66) and (67) simplify 
tO 

In what follows, the above theoretical considerations and 
independence assumptions are specialized to the case when 
the random vectors X and Y are the input described at the 
beginning of the subsection (and I, and I, denote any prior 
information used to construct their respective parametersets). 

VI.A.ii. Algorithm Description 
At step 201, the fused (corrected) PDF in (x,0) obtained by 

fusing the prior random vector (x,0) with the information 
from the update random vector (x,0) is 

1 (68) 
pf (x, 0) = GVM (x, 6; uti, P, Q, f3, T1, K1) 

GVW(x, 0; u2, P, Q2. f6, T2, K2), 
where 

(69) 

The normalization constant c is what is referred to as the 
prediction error. The objective is to approximate (68) by a 
GVM distribution with parameters (LL., PF, CF, B, Tr. K). To 
proceed, write 

pf (x, 0) = & N (x, u, P N (x; u2, P2) (70) 
expKcos(0- 0 (x)) + K2cos(6 - 0(x)), 
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-continued 
where 

and OC denotes equality up to an overall multiplicative con 
stant. Combining the two Gaussian PDFs in (70) into a single 
Gaussian PDF, it follows that 

Using elementary trigonometric identities, it follows that 

K1 cos(6 - 01(x)) + K2cos(6 - 02(x)) = K(x)cos(6 - Q(x)), 

where 

(The two-argument inverse tangent function is implied.) The 
final step in the computation is to find the parameters (or, ff. 
T. K.) Such that 

where e(x) +B.Z+/2ZrTrz, ZAF'(x-1), and 
PF-AFAf'. To streamline Subsequent notation, define the 
auxiliary quantities 

v; = A; (up - u), (73) 

T 1 T 
6; = 0;(u) = a + B v; + 2. ' T; vi. 

C = AIA, 

for i=1,2. The approximation (72) can be achieved using 
Taylor expansions yielding 

112 

= arctan(K Siné + k2 sin62, K1 cosé + K2cosé2), 

ff = Abf, 
TF = AC Af, 
where 

b f = (Kicos(of -0.1)b + 

K2cos(of -0)blf Kicos(of -6.) + K2cos(af - 0)), 

C = {K1 sin(of -0)(b1b - (bib + bfb) + bfb)+ 
K2sin(of -02)(b)b) - (b2b + brb.) + bfb)+ 

K1 cos(af - (1)C + 

In Summary, Equations (71) and (74) specify the parameter 
Set (Llf, Pf, Clf, B', Tr, K) of the output GVM distribution. 
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At step 202, using the GVM distribution with parameterset 

(lf, Pp. Cf. B', Tr, K) computed from above, the prediction 
error c given by (69) can be expressed in the form 

75 
C k/ IgVM (x, 0; af, Pf, a f, fif, Tf, Kf)f(x, 0).d6 dx, (75) 

R2-3 

where 

k 2ite lo(KF) det(2it Pf) 
T 27te * 1 lo (K1).2tek 2 lo (K2) det(27tp)det(27tp) 

and 

1 T 1 T 1 T ...21 f(x, 0) = exp - 5313 - 532 + 5373 - 2K sin 5 (0 - 01(x)) - 
1 1 

2K2 sin 2 (6-02(x)) + 2Kf sin’ 2 (0- Of (x)). 

The definitions of Z, Z, Zr, 0, (x), 0.(x), and 0(x) are 
provided following Equations (70) and (72). The framework 
of Gauss von Mises quadrature, as developed in Section IV, is 
applicable to the evaluation of the integral in (75). If {(Zo 
(p)}, and {w}, are the quadrature nodes (sigma 
points) and weights for the canonical GVM distribution, then 
it follows that 

W (76) 

C skX wo for;, 
i=1 

where 

1 1 1 
for; expl-vivia, 5 vic, v2.0 + 53.3a, 

2x sin 2ssin 2K sin Kisin's nic, - 2K Sin size, + 2.Kf Sin ide, 
and 

vic - Ai" (uf – Hi + Afzai), 
1 

info = (e. + of + fix + it, &c.) 
T T (o, +f vio; + 2'io Tivio ) 

for i = 1, 2. 

It is noted that the evaluation of the prediction errorintegral 
(75) using different order GVM quadrature rules allows the 
operator to assess when the fused PDF (68) is not well 
represented by a GVM distribution with the parameterset (ur, 
Pf, Clf, B', Tr. K). Indeed, the approximation (76) to the 
prediction error is exact if the fused PDF (68) is identically a 
GVM distribution. In such a case, the function f(x,0) in (75) 
is a constant. Hence, the prediction error integral can be 
evaluated exactly using any GVM quadrature rule. For 
example, using a trivial first-order GVM quadrature rule 
leads to 

1 1 . 1 
c1 = k exp-viv, iv. v. 2k, sin (of - 6) - 2ksin (of 0.) 

where v, v, 0, and 0 are the auxiliary quantities defined in 
(73). (The subscript 1 underneath c implies the use of a 
first-order GVM quadrature rule.) Similarly, one can evaluate 
(75) using a third-order quadrature method in conjunction 
with Equations (76). The (absolute or relative) difference 
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between the high and low-order approximations to the pre 
diction error (75) can be used to estimate the error of the 
integration and validate the underlying assumptions of the 
algorithm. A breakdown can be declared if this difference 
exceeds a user-defined threshold. 

VI.B. Measurement-Based Update 
FIG. 3 is a flowchart illustrating an exemplary process for 

fusing a prior state represented by a Gauss von Mises distri 
bution with an update report, wherein said update is an obser 
Vation related to the prior by a stochastic measurement model 
according to one embodiment of the present invention. In the 
case of a measurement-based update, the Bayesian non-linear 
filter correction step can have four inputs 300: 

i.a random vector (x,0) e IRR'xS, called the prior, distrib 
uted as a GVM distribution with parameter set (L, P. C. B. 
T. K), 

ii. a smooth map h: IR'xS -> IRA, called the measurement 
model, 

iii. a random vector ve TRP, called the measurement error, 
distributed as a Zero-mean multivariate Gaussian ran 
dom vector with covariance R, and 

iv. a vectorye IRA, called the measurement update, hypoth 
esized to be a realization of the random vector h(x,0)--V. 

There are two outputs 305: 
i. a random vector (x,0) e IR'xS, called the correction, 

distributed as a GVM distribution with parameter set 
(up, P., O.F, B, Tr. K.) which characterizes the fusion of 
the prior with the measurement update, and 

ii. the prediction error used to score the association of the 
prior with the measurement update. 

The algorithm can have four main steps Summarized below: 
Compute 301 the componentsurandolf of the output GVM 

parameter set by solving the least squares problem (81); 
Recover 302 the components P. f.p., and Kf of the output 
GVM parameter set from Equation (82); 

Compute 303 the component Tr of the output GVM param 
eter set by solving the least squares problem (83). If it is 
believed that the output is well-approximated by a Gaus 
sian, this step can be skipped and one can set T=0; and 

Evaluate 304 the prediction error integral (84) using a 
GVM quadrature rule in conjunction with the output 
from Steps 301-303 and Equation (85). 

These four steps are described in more detail below including 
discussions on theoretical considerations. 

VI.B. i. Theoretical Considerations 
In a general setting, Suppose X and V are random vectors 

defined on manifolds M and N, respectively, with respec 
tive PDFs p(x|I) and p(v), where I denotes any prior 
information associated with X. Given a smooth maph: M-> 
N , define the random vector Yaccording to 

The PDF obtained by fusing the information of X with that of 
a given updateye N is defined to be the conditional PDF of X 
given that Y=y and given the other prior information: 

Px s. Yi,(s ly, I.)=px Yi (x,y,1). 

By Bayes' rule and the preceding definitions, it follows that 

pX,Y(x|y, le) = (77) 

pyIX.1(y | x, y) px (XII.) 1 = - p(y – h ls), py! (yl) p (y – h(x)) px (x|I) 

where the normalization c is given by 
c-pril, (y|I)- pro-h(x))pxi,(x|I).dx. (78) 
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The above theoretical considerations are now specialized to 
the case when the random vectors X and V and the map hare 
the input described at the beginning of the Subsection. 
At step 301, the fused (corrected) PDF in (x,0) obtained by 

fusing the prior GVM distribution with the information from 
the measurement update y is 

where 

The normalization constant c is what is referred to as the 
prediction error. The objective is to approximate (79) by a 
GVM distribution with parameters (ur, Pr, Cr, fir, Tr. K). 
The mode of this output GVM distribution is (ur, C.). These 
parameters can be chosen to coincide with the mode of (79). 
The computation of the mode can be formulated in terms of a 
non-linear least squares problem as follows. Define 

where k is a constant (independent of X and 0), and 

2. 

r(x, 0) = 2v sini. 
& 

where 

Thus, the parameters up and of can be computed by solving 
the non-linear least squares problem 

1 T (81) 
(pt f, af) = argraspf(x, 0) = arginingr(x, 8)' r(x, 0). 

At step 302, the parameters P, Pr, and Kf of the output 
GVM distribution can be recovered from the osculating 
Gaussian of (79) in analogy to the derivation of Equation (24) 
in Section III.H. Specifically, 

where P-AA' and ac (x,0). Analytic expressions for the 
second derivatives of q are given by 
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where r(x,0) denotes the i-th component of the residual r(x, 
0). The Jacobian of r with respect to c is 

Al O 5 

d r(x, 8) = -V cosi (B+ 3)A V cosia 
S0, h(x, 0) S0 h(x, 0) 

10 

For the second derivatives, it is first first noted that 8a; ‘r, (x, 
0)-34 °z, 0, for i=1,..., n. For i=TC+1. 

a? (2V. sini) 15 

1 d) + COS 1 1 
-A 2 A sind.A.' (p + Tz) 

1 1 T 2 - 2 
wk 5 sins h(B+ f2)(p + 2) . 20 

1 1 TAl 1 1 5 sins h(f + Tz) 5 sins th 

Finally, for r=S. 25 

n+2+p p p 

X r(x, 0)0ir (x, 0) =X50 g; =X8,0; h;(x, 0). 
i=+2 i=l i=l 30 

These partial derivatives are also useful if solving the optimi 
zation problem (81) in Step 301 using Gauss-Newton or full 
Newton iterations. 
At step 303, in the space surveillance tracking problem, the 35 

prior GVM distribution used as an input to this algorithm can 
be significantly non-Gaussian characterized by “banana' or 
“boomerang” shaped level sets and with a parameter matrix T 
possessing non-negligible components. This “non-Gaussian 
ity' in the input is often induced from the propagation of 40 
another GVM distribution under the non-linear dynamics of 
the two-body problem. Further, in this application, the mea 
Surement update can often be a radar, electro-optical, or infra 
red sensor observation where the corresponding measure 
ment model is the map from (equinoctial orbital element) 45 
state space to the sensorspace coordinates. Upon performing 
the Bayesian correction step with this input, it is often found 
that the corrected (fused) distribution collapses to something 
which is nearly Gaussian. In other words, |T|-0. In general, 
if it is believed that the output is well-approximated by a 50 
Gaussian, this step can be skipped and one can set T-0. 
Regardless of whether this step is executed, some insight on 
how to validate the realism of the corrected GVM distribution 
compared to the actual corrected PDF are provided in the 
discussions at the end of Step 304. 55 

Let T be an approximation to Tr and initially set T=0. In 
this step, the approximation T can be refined by Solving a 
non-linear least squares problem, in analogy to Step 104 of 
the uncertainty propagation algorithm in Section V.C. Using 
the exact expression for the corrected (fused) PDF p(x,0) 60 
given by (79) and the approximation given by 

the approximation of T is improved by “matching"p, and Pf 
at the N quadrature nodes {(x, 0}, , of the GVM distri- 65 
bution with parameter set (LLP, PF, CF, B, Tr. Kr). These sigma 
points are defined from either the third, fifth, or higher-order 

46 
GVM quadrature rules derived in Sections IV.A., IV.B. and 
IV.C. respectively. It is noted that 

1 r a 
Xc = t f + Afza, 6 = do + of + f2., -- 53, frzo, 

for i=1,..., N, where {(Z(p), Y are the quadrature nodes 
corresponding to the canonical GVM distribution. One way 
to perform this matching procedure is to study the overdeter 
mined system of algebraic equations 

in Tr. Instead, the analogous equations in log space are used 
by defining 

pf (x, 0) 
if (x, 8) = –2in f pf (Elf, af) Pa (4tf, af) 

It follows that 

l(x,0)=M(x,0;u, PC, B, T, K)+(y-h(x,0)) R' (y-h(x,0)- 
M(L.C.I.P.C.?3.T.K)-(y-h(L.C.))'R' (y-h 
(lf Clf)), 

l, (x,0)-M(x,0;up P.C.p.?.f.K.), 
where M is the Mahalanobis von Mises statistic (26). The 
overdetermined system of algebraic equations 

lf (x,0)-l.(x,0),i-1,..., N. 
is solved for T in the least squares sense. This leads to the 
optimization problem 

a a (83) 

T = argminX |r(?) Subject to f = Tif, 
ff i=1 

where 

r . 1 
r;(TF) = 5. go + 4ksin stic, -- v, vo - 

. 1 . 1 {{f -4Ksin in vivif 5,3- -4K? sing the 
and 

1 1 
d) + Of +f33 + 5: (a + B've -- iv, Ive.) 

It is noted that only the first two terms in the residuals r, 
namely S.S. and 4K sin /3m, depend on Tr. The other 
terms can be pre-computed once. In Solving the non-linear 
least squares problem (83), the starting iteration T=0 is used. 
It is also useful to note the partial derivatives of r: 

At step 304, using the GVM distribution with parameterset 
(up, P. C., fp, Tr. KF) computed from Steps 301-303, the 
prediction error c given by (80) can be expressed in the form 
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my - (84) 

C = k 9 VW (x, 0; af, Pf, af, bf, Tf, Kf)f(x, 0)ded x, 
R2-3 

where 

2ite flo(Kr) det(2it Pf) 112 
T 27te-K lo(K) lattir, 

and 

1 1 1 T T T f(x, 0) = explic's tists - it's- 
...21 ...21 2Ksin 2 (6-0(x)) + 2ksin 2 (0–0 f(x)), 

3 = A'(x - u), 3F = Af'(x-up), g = S(h(x,0)-y), R = SS, 
1 

The framework of Gauss von Mises quadrature, as developed 
in Section IV, is applicable to the evaluation of the integral in 
(84). If{(Z(p)} ^ and {w} i^are the quadrature nodes 
and weights for the canonical GVM distribution, then it fol 
lows that 

W (85) 
C as kX wo for; 

i=1 

where 

1 1 1 -its, tits-, -its f = exp 
2ksin 2 no +2.Kf sin’ 2 (bo, 

and the definitions of v. S., and mare provided in Step 303 
following Equation (83). 
As noted in the case of full state update, the evaluation of 

the prediction error integral (84) using different order GVM 
quadrature rules allows the operator to assess when the fused 
PDF (79) is not well-represented by a GVM distribution with 
the parameter set (LLP, PF, CF, B, Tif, Kf). Indeed, the approxi 
mation (85) to the prediction error is exact if the fused PDF 
(79) is identically a GVM distribution. In such a case, the 
function f(x,0) in (84) can be a constant. Hence, the predic 
tion error integral can be evaluated exactly using any GVM 
quadrature rule. For example, using a trivial first-order GVM 
quadrature rule leads to 

1 T 1.T :21 c1 = kexp –5 vivr 5étéf - 2Ksin 5 mi 

where vi, Sr. and m are the auxiliary quantities defined 
following Equation (83). (The subscript 1 underneath c 
implies the use of a first-order GVM quadrature rule.) Simi 
larly, one can evaluate (84) using a third-order quadrature 
method in conjunction with Equations (85). The (absolute or 
relative) difference between the high and low-order approxi 
mations to the prediction error (84) can be used to estimate the 
error of the integration and validate the underlying assump 
tions of the algorithm. A breakdown can be declared if this 
difference exceeds a user-defined threshold. 

Stated another way, updating a predicted location of an 
object in a multi-dimensional space having a plurality of 
(n+1) dimensions can comprise reading a first probability 
density function representing a first location of the object on 
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a cylindrical manifold (IR'xS) of the multi-dimensional 
space. A second probability density function representing a 
second location of the object on the cylindrical manifold of 
the multi-dimensional space can be received. The first prob 
ability density function can be fused with the second prob 
ability density function to form a third probability density 
function representing a third location of the object on the 
cylindrical manifold of the multi-dimensional space. The 
third probability density function can be provided as an indi 
cation of the updated predicted location of the object in the 
multi-dimensional space. 
More specifically, each of the first, second, and third prob 

ability density functions can be represented by Gauss von 
Mises distributions defined on the manifold IR'XS. The first 
Gauss von Mises distribution can be represented by the 
parameter set (LL. P. C., f, T. K.), the second Gauss Von 
Mises distribution can be represented by the parameter set 
(LL. P. C. B. T. K.), and the third Gauss von Mises distri 
bution can be represented by the parameter set (LL., PF, CF, B, 
Tr. K). The parameters LLP, Pr, Cr, Br, Tr. Kf can be calculated 
201 from analytical algebraic and trigonometric expressions. 
In some cases, a prediction error can be computed 202 using 
a Gauss von Mises quadrature rule of a chosen order of 
accuracy. In a SSA application, at least one of the first or the 
second Gauss von Mises distributions can be generated from 
pluralities of radar, electro-optical, or infrared sensor obser 
Vations. In various cases, at least one of the first or the second 
Gauss von Mises distributions can be generated from Gaus 
sian distributions defined on manifold R''. The second 
probability density function can comprise an observation. In 
such cases, the observation can be related to the first prob 
ability density function by a stochastic measurement model, 
and each of the probability density functions can be defined 
on a n+1 dimensional cylindrical manifold (IR'xS). 

In one embodiment, the first and third probability density 
functions can be represented by Gauss von Mises distribu 
tions defined on the manifold IR'xS. In such cases, the first 
probability density function can be represented by the param 
eter set (L, P. C. B. T. K) and the third probability density 
function can be represented by the parameter set (ur, Pr, Cr, 
ff, T., KF). The second probability density function can be a 
vector (ye IR ) hypothesized to be a realization of a random 
vector (h(x,0)--v), where h: IR "xS -> IRA and V is a zero-mean 
p-dimensional Gaussian random vector with covariance 
matrix R. The parameters up and C. can be computed 301 by 
Solving a non-linear least squares problemand the parameters 
P. f. and Kf can be computed 302 from analytical algebraic 
expressions. The parameter T can be computed 303 by solv 
ing a non-linear least squares problem and, in Some cases, a 
prediction error can be computed 304 using a Gauss von 
Mises quadrature rule of a chosen order of accuracy. In a SSA 
application, the first Gauss von Mises distribution can be 
generated from a plurality of radar, electro-optical, or infrared 
sensor observations. In some cases, the first Gauss von Mises 
distribution can be generated from a Gaussian distribution 
defined on the manifold R''. 
VII. Batch Processing 

Sequential non-linear filtering, the focus of the previous 
two sections, entails updating the system state recursively 
using multiple uncertainty propagation (prediction) and data 
fusion (correction) operations within a Bayesian framework. 
This section considers the batch filtering problem which pro 
cesses a sequence of reports simultaneously to produce a 
probability density function (PDF) of the system state condi 
tioned on the reports. Such batch processing capabilities can 
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be used for track initiation or orbit determination to produce 
a prior PDF of the system state which can be subsequently 
passed to a sequential filter. 

For a system state defined on a cylindrical manifold. Such 
as a space object's equinoctial orbital element state, a Baye- 5 
sian maximum aposteriori framework can be used to generate 
a Gauss von Mises (GVM) distribution representing the state 
conditioned on a sequence of reports. The input reports can be 
either (i) GVM distributions in the same state space or (ii) 
observations each related to the system state by a stochastic 10 
measurement model. When specialized to two-body dynam 
ics in orbital mechanics, the new batch processing capability 
using the GVM distribution can extend the sequential differ 
ential correction (SEQDC) and batch differential correction 
(BATCHDC) algorithms in the Astrodynamics Standards 15 
software suite maintained by Air Force Space Command. 
SEQDC and BATCHDC are the analogous algorithms for 
Cases (i) and (ii), respectively, and produce a Gaussian PDF 
of the orbital state conditioned on the reports. The complete 
algorithm descriptions for Cases (i) and (ii) are provided in 20 
Subsections VII.A and VII.B, respectively, with respective 
block diagrams provided in FIGS. 4 and 5. 

VII. A. Full State Reports 
FIG. 4 is a flowchart illustrating an exemplary process for 

generating a Gauss von Mises distribution from a plurality of 25 
reports, wherein said reports are Gauss von Mises distribu 
tions according to one embodiment of the present invention. 
In the case of full state reports, the batch processing algorithm 
can have the following inputs 400: 

i. a sequence of mutually independent random vectors (x, 30 
0) e IR'xS, for k=1,..., m, called the reports, each 
distributed as a GVM distribution with respective 
parameter set (Ll P. C. B. T. K.); and 

ii. a sequence of diffeomorphisms do: R. ''xS -> IR'xS, for 
k=1,..., m-1. 35 

The output 404 can be a random vector (x, 0) e IR"xS, 
distributed as a GVM distribution with parameter set (LL. P. 
C. B. T. K.) which characterizes the “fusion' of the m-th 
report with the first m-1 reports subject to the constraints 

for k=1,..., m-1. The algorithm can have three main steps 
summarized below: 
Compute 401 the components L, and C of the output 
GVM parameter set by Solving the least squares problem 45 
(90); 

Recover 402 the components P, B, and K, of the output 
GVM parameter set from Equation (91); and 

Compute 403 the component T of the output GVM 
parameter set by Solving the least squares problem (93). 50 
If it is believed that the output is well-approximated by a 
Gaussian, this step can be skipped and one can set T-0. 

These three steps are described in more detail below includ 
ing discussions on theoretical considerations and a precise 
statistical definition of what is meant by “fusion” in the sense 55 
of the output. 

VII.A. i. Theoretical Considerations 
In a general setting, Suppose for k=1,..., m that X is a 

random vector defined on a manifold M with PDF py 
(XII), where I denotes any prior information association 60 
with X. Let 1 (I. . . . . I.). The joint PDF of X1, ..., X 
(conditioned on 7 ) can be denoted by 

40 

Px1, ... x, (x, &n ..). 
The conditional PDF of X given XX, for k=1,..., m-1 65 
and given the prior information can be denoted by 

PXIX1, . . . X-1." ($n is 1, ..., in-1 ..). 

50 
Let d: JM -> M, for k=1,. . . . , m-1, be a sequence of 
diffeomorphisms with corresponding actions 

and let denote the inverse of db so that 
x -P(x).k=1,..., m-1. 

Further, for k=1,..., m-1, define the composition maps 
E. i., i-o, i-10 . . . on 1 (86) 

with corresponding actions 
X, in (,n).k1, ..., m-1 

For notational convenience, E denotes the identity map. 
The PDF obtained by fusing the m-th report with the first 

m-1 reports can be defined to be the conditional PDF of X, 
given X E(X), for k=1,..., m-1, and given the other prior 
information J: 

Pr(x,a,n)-Px,x, . . . . n-1 n (, 1(n). . . . . .,n-1 
(x,)...). 

By the definition of conditional probability, 

87 Pr(, 17.)=ips. ...(...), a s.c.17). " 
where the normalization constant c is given by 

C = Pyxia, (, (xn), ... ...,n-1 (xn)n) (88) 

- I.P. x, y, (ii (m), . En(xn)n) dixin. 

Additionally, if (i) the sequence of random vectors X. . . . . 
X are mutually independent given the prior information 
and (ii) for k=1,. . . . m., X is independent of I. . . . . I, 
I,..., I, given I, then (87) and (88) simplify to 

C III px|l (Ek (Am) l dyn. 

The above theoretical considerations and independence 
assumptions can now be specialized to case when the random 
vectors X, ..., X are the input described at the beginning of 
the Subsection (and I. . . . . I denote any prior information 
used to construct their respective parameter sets). 

VII.A.ii. Algorithm Description 
At step 401, given the input defined at the beginning of the 

subsection, the fused PDF in (x,0) is 

1 r- (89) 
pf (xn. (n) = I gW/vt(Ek (xi. 6); ult, P., ak, f3, Tk, Kk), 

k=1 

where c is a normalization constant and the E. for k=1,..., 
m, are the composition maps defined in (86). The objective 
can be to approximate (89) by a GVM distribution with 
parameters (LL. P. C. B. T. K.). The mode of this output 
GVM distribution is (L. C.). These parameters can be cho 
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sen to coincide with the mode of (89). The computation of the 
mode can beformulated interms of a non-linear least squares 
problem as follows. Define 

q f(xn, (n) = -lnpf (Xin, (n) = iro, (),) r(x, 0) + k, 

where k is a constant (independent of X, and 0), and 

21 

1 
2W K1 sins h; 

r(Xin, (n) = 
<n 

1 
2W Kn sins in 

where 

3 = A'(x - uk), 
1 

(b. = 8 – a – f : – 5:Tz. 
(xi, (k) = Ek (Xin, (n), 

for i=1,..., m. Thus, the parameters up and of are computed 
by Solving the non-linear least squares problem 

(90) argmaX 
(pl. Ón) = pf (xn, (n) 

argmin 1 

= "ircs, 9,'rts, 9,). Wm. i 

At step 402, the parameters P, B, and K, of the output 
GVM distribution can be recovered from the osculating 
Gaussian of (89) in analogy to Step 302 of the data fusion 
algorithm in Section VI.B. Specifically, 

A, (1 + Rif, F)A, -R, A, B (91) 
a -1 W -Knfi An Kn 

where P, AA, and ac, (x, 0). Analytic expressions 
for the second derivatives of q in terms of the derivatives of 
the maps E are given as follows. First, the notation E. E. 
and E, for i=1,. . . . , n, is used to express the map E in 
component form according to 

Ek 1 (xn. (n) 
Eka (Vn, 0n Ek (xn, 0n - - Eka (Vn, 0n Ein (xn. (n) 

Eka (Vn, 0n) 

for k=1,.... m. Next, define the auxiliary quantities 
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for k=1,..., m. The second derivatives of q are given by 

d qf = (6. r)'d -- X rid, ii, 
i=1 

where r, denotes the i-th component of the residual r. The 
Jacobian of r with respect to a , is 

X rid, r = SS (3);0, 
i 1 1 

(k); + X 2W K. sinib.0, (v Kik sins the } 
k=1 

It follows that 

X (3);0, (3); = X (ck);0, Ski, 
i=1 i=1 

and 

1 

d (2v Kik sinib) 
1 1 1 

W.K. sole (e. Eke BT B 2. (d. );0, s 5 sing the be 

These partial derivatives are also useful if solving the optimi 
zation problem (90) in Step 401 using Gauss-Newton or full 
Newton iterations. 
At step 403, let T be an approximation to T, and initially 

set T=0. In this step, the approximation T can be refined by 
Solving a non-linear least squares problem, in analogy to Step 
104 of the uncertainty propagation algorithm in Section V.C 
and Step 303 of the data fusion algorithm in Section VI.B. As 
motivated in the latter, one can elect to skip this step (and set 
TO) if it is believed that the output is well-approximated by 
a Gaussian, as might be the case if the underlying application 
is the space Surveillance tracking problem. 
Using the exact expression for the fused PDF p(x, 0,...) 

given by (89) and the approximation given by 

p(x,0)-9' (x,0,..., Pacif, folk,), (92) 
the approximation of T is improved by "matchingp, and pf 
at the N quadrature nodes {(x,0)}^ of the GVM distri 
bution with parameter set (LL. P. C. B. T. K.). These 
quadrature nodes are defined from either the third, fifth, or 
higher-order GVM quadrature rules derived in Sections IV.A. 
IV.B, and IV.C. respectively. It is noted that 

~ . . - T 1T 
Xc = p + Anko, 6 = (bor; + (n + f2., + 250, Tnzo, 
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for i=1,..., N, where {(Z(p), Y are the quadrature nodes 
corresponding to the canonical GVM distribution. One way 
to perform this matching procedure is to consider the match 
ing equations in log space by defining 

m, 6m a(\m, 6m 
lf (Xin, (n) = –2in E. 1.(, ,)=-2In pf (pl. Ón) Pa (fl., (m) 

It follows that 

" (M(, (x, 0); us, P., a, b, T. K.)- 
lf (xn. (n) = k=1 M (Ek (pl. Ó n), uk, P., ak, f, T. K.) 

la (xn, 8,)= M (xn, 9; in Pin, on B, 

where M is the Mahalanobis von Mises statistic (26). The 
overdetermined system of algebraic equations 

is solved for T, in the least squares sense. This leads to the 
optimization problem 

W (93) 
Tn = argminX |r(T) subject to T = Ti, 

T is 

where 

i 

; (T,) = T + 4 il - vs, - 4K, sini, - r (T) = vic V. --4K Sin 2nkai viv - 4K Sin 27. 
k= 

. 1 
302a: . 4R, sin 2 (bo, 

and 

vko = A'(Ek (vol. 8-)- uk), S = A'(; (ii, an) - uk), 
1 

- F T T nko = Ek g(x, 0) - ak - fivko - 5'., Tk Vict, 

i = 2 e(p, an)-a-five- i? 5. 

It is noted that the only terms in the residuals r, that depend on 
Tarevko."Vo, and 

. 1 
4K sin 2 iikoi. 

The other terms can be pre-computed once. In solving the 
non-linear least squares problem (93), the starting iteration 
T=0 is used. It is also useful to note the partial derivatives of 

Ör T i - a r. a to X {vko Ak'dge (vo, 6) + Kk sin 

Optionally, the fidelity of the approximation (92) can be veri 
fied by evaluating the normalization constant c using a first 
and third-order accurate GVM quadrature rule, in analogy to 
the discussions at the end of the data fusion algorithms in 
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Sections VIA and VI.B. A breakdown is declared if the (abso 
lute or relative) difference exceeds a user-defined threshold. 

VII.B. Measurement-Based Reports 
FIG. 5 is a flowchart illustrating an exemplary process for 

generating a Gauss von Mises distribution from a plurality of 
reports, wherein said reports are observations related to the 
state space by a stochastic measurement model according to 
one embodiment of the present invention. In the case of 
measurement-based reports, the batch processing algorithm 
can have the following inputs 500: 

i.a sequence of smooth maps h: IR'xS -> IRA, called the 
measurement models, 

ii. a sequence of random vectors VeR', for k=1,.... m. 
called the measurement errors, distributed jointly as a 
Zero-mean Gaussian random vector of dimension pn 
with covariance R, 

iii. a sequence of diffeomorphisms dR "xS->R"xS, 
for k=1,..., m-1, 

iv. a sequence of vectors yeR', for k=1,..., m, called the 
measurements or reports, each hypothesized to be a real 
ization of the respective random vector h(x,0)--V. 
where the (x,0) are constrained by the relations (X, 
0)=d(x,0), for k=1,..., m-1, and 

v. optionally, a random vector (x, 6,...) eR"x S, called the 
prior, distributed as a GVM distribution with parameter 
set (, P, d, B, T, K,). 

The output 502 can be a random vector (x,0) eIR'xS, 
distributed as a GVM distribution with parameter set (L. P. 
C. B. T. K.) which characterizes the “fusion' of the m 
reports and the optional prior. 

In what follows, theoretical considerations are discussed 
and a precise statistical definition of what is meant by 
“fusion” in the sense of the output is made. In the process, it 
is shown that batch processing with measurement-based 
reports in conjunction with the input listed above reduces to 
the data fusion algorithm of Section VI.B for a measurement 
based update. This is Step 501 in FIG. 5. 

VII.B. i. Theoretical Considerations 
In a general setting, Suppose X, is a random vector, called 

the prior, defined on a manifold M with PDF p(x|I), 
where I, denotes any prior information associated with X. 
Further, suppose V.,..., V are random vectors each defined 
on a manifold N with joint PDF p (v1,..., v.i). 
Given a sequence of smooth maps h: M -> N , for k= 
1,..., m, and a sequence of diffeomorphisms d: M-> M . 
for k=1,..., m-1, define the sequence of random vectors Y, 
for k=1,..., m, according to 

Subject to the constraints 

X-1=d(X), 

for k=1,..., m-1. Let I denote the inverse of db so that 

X-POX-1).k=1,..., m-1. 

Further, for k=1,..., m-1, define the composition maps 

(94) E. i., i-o, i-10 . . . on 1, 

and let E be the identity map. For notational convenience, let 
17 =(V, . . . V.), X =(X, . .., Xn), c (x1, . . . . X,n), y = 
(Y, - - - Y). and g =(y. • s ym). 

The PDF obtained by fusing a sequence of reports y, ..., 
ye N with the prior is defined to be the conditional PDF of 
X, given thatY y, for k=1,..., m, and given the other prior 
information I: 
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By marginalization, 
p(x, J. I.)- ... pxy.(4: "I,...}dx1...dx,-1, (95) 

By Bayes' rule, 

1 
Pll, (x|, |n) = Pula, in (if |X, In,)pril, (vin), 

where c p(y |I). From the preceding definitions, it fol- 10 
lows that 

Pyli, (9 X, in) = p(y1 -h1(x1),... , yn - h(xn)), 
15 

in-l 

Palin (vlin) = Px, In, (Vn I,) Pxx in (\k V-1 in) 
k=1 

in-l 

= Px, In, (Vn I,) d(x - (xi. 1)), 
k=1 2O 

where 6 denotes the Dirac delta function. Substituting these 
expressions into (95) yields 

25 

pf (xng. In) = 
1 
P(y1 - (ho)(xn), ... , yn - (hno En)(xn))px|, (xn) in), 

30 

where the normalization constant c is given by 

If there is no prior information on X, then the prior PDF 35 
p(x|I) is removed from the formulation by making the 
diffuse prior assumption. 
The above theoretical considerations are now specialized 

to the case when the random vectors X, ..., X and V1, ..., 
V, the maps hi. . . . , h, and dd. . . . . d, and the reports 40 
y. . . . , y are the input described at the beginning of the 
subsection. It is shown how the algorithm of Section VI.B can 
be applied to generate the desired output. 

VII.B.ii. Algorithm Description 
At step 501, given the input defined at the beginning of the 45 

subsection, the fused PDF in (x,0) is 

1 (96) 
pr(x, 0) = N (4 -h (x, 0); 0, R) 50 

9 VM (xn, 8, p., P., 6.,n, B, fin Rn), 

where c is a normalization constant and 
55 

y ho 

if = | : , H = | : . 
ym hno En 

60 

The composition maps E, for k-1,..., m, can be defined in 
terms of the input diffeomorphisms d, ..., d. by way of 
Equations (86). 
The objective is to approximate (96) by a GVM distribu- 65 

tion with parameter set (LL. P. C. B. T. K.). This is 
precisely the objective of the data fusion algorithm in Section 

56 
VI.B for a measurement-based update upon comparing Equa 
tions (96) and (79). Indeed, the algorithm of Section VI.B is 
applicable in this case where the inputs are (i) the prior GVM 
distribution with parameter set (LL. P. C. B. T. K.), (ii) 
the map it defined above, (iii) the covariance matrix R, and 
(iv) the vector y defined above. If there is no prior informa 
tion on the state (x, 0) for the first input, then any terms 
dependent on the prior in the objective function of Equation 
(81) can be removed. 

Stated another way, determining a track of an object 
through a multi-dimensional space having a plurality of(n+1) 
dimensions can comprise receiving a plurality of probability 
density functions including at least one report probability 
density function. The plurality of probability density func 
tions can be fused to forman output probability density func 
tion. Each probability density function can be defined on a 
n+1 dimensional cylindrical manifold (IR'xS), and the prob 
ability density functions can be constrained by a plurality of 
diffeomophisms from IR"xS to IR"xS. The output prob 
ability density function can be provided as a representation of 
the track of the object through the multi-dimensional space. 

For example, each of the plurality of probability density 
functions can comprise a report represented by a Gauss von 
Mises distribution defined on the manifold IR 'xS and the 
Gauss von Mises distributions can comprise at least a first 
distribution with a parameter sets (LL. P. C. B. T. K.), and 
a second distribution with a parameter set (, P, c, B, 
T. K.). In Such cases, the parameters LL, and C, be computed 
401 by solving a non-linear least squares problem. The 
parameters P, B, and K, can be computed 402 from ana 
lytical algebraic expressions. The parameter T, can be com 
puted 403 by solving a non-linear least squares problem. In a 
SSA application, one or more of the Gauss von Mises distri 
butions can be generated from pluralities of radar, electro 
optical, or infrared sensor observations, one or more of the 
Gauss von Mises distributions can be generated from Gaus 
sian distributions defined on the manifold R". The diffeo 
morphisms can be solution flows induced from a system of 
ordinary differential equations describing two-body dynam 
ics of orbital mechanics for the object. 

In another case, the plurality of probability density func 
tions can comprise a first probability density function and at 
least one report. Each probability density function can be 
represented by a Gauss von Mises distribution defined on the 
manifold IR'xS. The first Gauss von Mises distribution can 
be represented by a parameter set comprising (, P. d B, 
T. K.) and the report Gauss von Mises distributions can be 
represented by a parameter set comprising (LL. P. C. f. 
T. K.). The report Gauss von Mises distributions can be 
vectors (ye IRA, for k=1,..., m), each hypothesized to be a 
realization of a random vector (h(x,0)--V), where h: IR "x 
S-> IR', for k=1,..., m, and (v. . . . . V.) is a Zero-mean 
pm-dimensional Gaussian random vector with covariance 
matrix R. In a SSA application, the first Gauss von Mises 
distribution can be generated from a plurality of radar, elec 
tro-optical, or infrared sensor observations. The first Gauss 
Von Mises distribution can be generated from a Gaussian 
distribution defined on the manifold IR''. One or more of the 
reports may also be generated from radar, electro-optical, or 
infrared sensors. The diffeomorphisms can be solution flows 
induced from a system of ordinary differential equations 
describing two-body dynamics of orbital mechanics for the 
object. 

EXAMPLES 

In the following, an example is presented to demonstrate 
embodiments of the present invention. The example is a sce 
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nario in low Earth orbit (LEO) which compares the Gauss von 
Mises (GVM) filter prediction step with that of the extended 
Kalman filter (EKF), the unscented Kalman filter (UKF), a 
Gaussian sum filter (GSF), and a particle filter. The accuracy 
of the GVM uncertainty propagation algorithm is also vali 
dated using a metric based on the L2 error. For the specific 
LEO scenario, it is shown that the GVM filter prediction step 
properly characterizes the actual uncertainty of a space 
objects orbital state while simple less sophisticated methods 
which make Gaussian assumptions (such as the EKF and 
UKF) do not. Specifically, under the non-linear propagation 
of two-body dynamics, the new algorithm properly charac 
terizes the uncertainty for up to eight times as long as the 
standard UKF all at no additional computational cost to the 
UKF. 

In what follows, the particulars of the simulation scenario 
are defined in Section I and the results are discussed Section 
II. 
I. Scenario Description 

This section describes the specific input to the uncertainty 
propagation algorithmin Section V.C above, how the output is 
visualized, and how the accuracy of the output is validated. 

I.A. Input 
The initial GVM distribution of the space objects orbital 

state (i.e., input (i)) is defined with respect to equinoctial 
orbital elements (a, h, k, p, q, DeR xS with parameter set (u, 
P. C. B. T. K) given by 

7136.635 km (20 km) () () () () 
O O 106 () () () 

pl = O P = O O 106 () O 

O O 0 0 106 () 

O O O O O 106 

Q = 0, p8 = 0, T = 0, K = 3.282806 x 107. 

The mode of this distribution describes a circular, non-in 
clined orbit in LEO with a semi-major axis of 7136.635 km. 
This choice of semi-major axis is made so that the instanta 
neous orbital period of the object is 100 minutes. In subse 
quent discussions, a time unit of one orbital period is equal to 
100 minutes. It is noted that the GVM distribution with the 
above parameter set is approximately Gaussian (since T-0 
and KD1). In particular, the standard deviation in the mean 
longitude coordinate 1 is O,-1/Vk=0.01°–36". When validat 
ing against the EKF, UKF, or Gaussian Sum filter, the oscu 
lating Gaussian (22) is used to convert the input GVM distri 
bution to a Gaussian distribution. 

The diffeomorphism describing the non-linear transforma 
tion (i.e., input (ii)) is the solution flow (47) induced from the 
system of ordinary differential equations (2) describing the 
two-body dynamics of orbital mechanics. (See the discus 
sions in Sections I.A and V.A. above) The parameters of the 
diffeomorphism are the epoch time to of the input, the final 
epoch time t, and the specific forces used to model the per 
turbations. In simulations, to is the J2000 epoch (1 Jan. 2000, 
12:00 UTC) and t-to is varied from 0.5 to 8 orbital periods. 
The EGM96 gravity model of degree and order 70 is used to 
model the perturbations. Though one can include additional 
non-conservative forces such as atmospheric drag, the non 
linearities induced by the gravity alone (especially in LEO) 
are sufficiently strong to stress the algorithm. Moreover, the 
initial standard deviation in the semi-major axis of 20 km is 
pessimistic. It is observed that non-Gaussian effects are 
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accelerated for larger initial uncertainties in the semi-major 
axis. Finally, the numerical integration of the ordinary differ 
ential equations is performed using a Gauss-Jackson method. 

I.B. Visualization 
The output of the uncertainty propagation algorithm in 

Section V.C. above is a GVM distribution characterizing the 
uncertainty of the space objects orbital state at a specified 
future epoch. In order to visualize this six-dimensional prob 
ability density function (PDF), the level curves (i.e., curves of 
equal likelihood) of the two-dimensional (2D) marginal PDF 
in the semi-major axis a and mean longitude coordinates 1 are 
plotted. This choice is made because it is along this particular 
2D slice where the greatest departure from "Gaussianity” and 
the most extreme “banana’’ or “boomerang shaped level 
curves are observed. 

In the panels of FIG. 9, no level curves (of the marginal 
PDF in the a and 1 coordinates) are plotted in half-sigma 
increments starting at 

i 
for various final epoch times t. In order to visualize these 
marginal PDFs which are defined on a cylinder, the cylinder 
is cut at C.-It (where C. is the C. parameter of the propagated 
GVM distribution) and rolled out to form a 2D plane. This 
plane is then rotated so that the semi-major and semi-minor 
axes of the osculating Gaussian covariance are aligned with 
the horizontal and vertical. (Any such rotation or rescaling 
does not exaggerate any non-Gaussian effects or the extrem 
ity of the boomerang shape because cumulants of order three 
and higher are invariant under an affine transformation.) 
Where appropriate, overlays of the level curves generated 
from the EKF and UKF are also shown. Additionally, the 
crosses represent particles generated from a Monte-Carlo 
based particle filter. If the represented PDF properly charac 
terizes the actual uncertainty, then approximately 99.5% of 
the particles should be contained within the respective 3O 
level curve. 

I.C. Validation 
An inspection of the panels in FIG. 9 provides a simple 

visual means to assess whether the represented uncertainty 
properly characterizes the actual uncertainty of the space 
objects orbital state. “Most of the particles (crosses) should 
be contained within the level curves. To quantify uncertainty 
realism more rigorously and hence validate the prediction 
steps of the different filters under consideration, the normal 
ized Lerror is studied. 

For functions f,g: M->IR, the normalized L. error 
between if and g is the scalar 

where III, is the L2 norm: 

By non-negativity of the L2 norm, LeO with equality if fg 
in the L2 sense. By the triangle inequality, Lis1 with equality 
if f and g are orthogonal in the L sense. 
The validation tests shown in FIG. 10 generate a time 

history of the normalized L- error 

L (Papprox(t). Phaseline(t)), 
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where t is the final epochtime. Further, p(u,t) represents 
an approximation to the PDF of a space object’s orbital state 
at time t (u represents equinoctial orbital elements) as com 
puted by the prediction step of the GVM filter, EKF, UKF, or 
a Gaussian sum filter. Moreover, p(u,t) is a high-fidel 
ity approximation to the exact state PDF which serves as a 
baseline for comparison. This baseline is computed using a 
high-fidelity GVM mixture distribution using the Gaussian 
sum refinement scheme of Horwood et al. extended to GVM 
distributions as described in Section V.F above. Thus, pap 
Prox is a good approximation to the actual state PDF if the 
normalized Lerror between it and the baseline Pbaseine is 
Zero or “close to Zero' for all time. 
II. Discussions 
As described in Subsection I.B. of the EXAMPLE, the 

panels in FIGS. 9a-9fshow the evolution of a space objects 
orbital uncertainty (with initial conditions defined in Subsec 
tion I.A of the EXAMPLE) computed using the prediction 
steps of the EKF, UKF, GVM filter, and a particle filter. Each 
of the six panels of FIGS. 9a-9f shows the respective level 
curves 925 for EKF, 920 for UKF, and 915 for GVM in the 
plane of the semi-major axis and mean longitude coordinates 
at the epochs t-to-0, 0.5, 1, 2, 4, 8 orbital periods. In each of 
the six epochs, the level curves 915 produced by the GVM 
filter correctly capture the actual uncertainty depicted by the 
particle ensemble. Each set of level curves 915,920, and 925 
is deduced from the propagation of only 13 quadrature nodes 
(corresponding to a third-order GVM quadrature rule). The 
computational cost is the same as that of the UKF. For the 
UKF, its covariance is indeed consistent (realistic) in the 
sense that it agrees with that computed from the definition of 
the covariance. Thus, in this scenario, the UKF provides 
“covariance realism' but clearly does not support “uncer 
tainty realism' since the covariance does not represent the 
actual banana-shaped uncertainty of the exact PDF. Further, 
the state estimate produced from the UKF coincides with the 
mean of the exact PDF. However, the mean is displaced from 
the mode. Consequently, the probability that the object is 
within a small neighborhood centered at the UKF state esti 
mate (mean) is essentially Zero. The EKF, on the other hand, 
provides a state estimate coinciding closely with the mode, 
but the covariance tends to collapse making inflation neces 
sary to begin to cover the uncertainty. In neither the EKF nor 
UKF case does the covariance actually model the uncertainty. 
In summary, the GVM filter maintains a proper characteriza 
tion of the uncertainty, the EKF and UKF do not. 

FIG. 10 shows the evolution of the normalized Lerror, as 
defined in Subsection I.C of the EXAMPLE, computed from 
the UKF 1025. EKF 1020, the Gaussian sum filter (GSF) with 
N=17 and N=49 components 1015 and 1005, and the GVM 
filter 1010. The UKF and EKF quickly breakdown, but accu 
racy can be improved by increasing the fidelity of the Gaus 
sian sum. The normalized Lerrors produced from the GVM 
filter lie between those produced from the 17 and 49-term 
Gaussian Sum. It is noted that the 17-term Gaussian Sum 
requires the propagation of 17x13–221 quadrature nodes. 
The GVM filter uses 13. In principle, the accuracy of the 
GVM filter could be further improved by using mixtures of 
GVM distributions as described in Section V.F above. Not 
withstanding these comments, if one deems a normalized L. 
error of L=0.05 to signal a breakdown in accuracy, then the 
UKF and EKF first hit this threshold after about one orbital 
period. By examining when the normalized L- error first 
crosses 0.05 for the GVM filter, it is seen that one can propa 
gate the uncertainty using the GVM filter for about eight 
times longer than when using an EKF or UKF. 
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FIG. 11 is a block diagram illustrating components of an 

exemplary operating environment in which various embodi 
ments of the present invention may be implemented. The 
system 1100 can include one or more user computers 1105, 
1110, which may be used to operate a client, whether a dedi 
cate application, web browser, etc. The user computers 1105, 
1110 can be general purpose personal computers (including, 
merely by way of example, personal computers and/or laptop 
computers running various versions of Microsoft Corp.’s 
Windows and/or Apple Corp.’s Macintosh operating sys 
tems) and/or workstation computers running any of a variety 
of commercially-available UNIX or UNIX-like operating 
systems (including without limitation, the variety of GNU/ 
Linux operating systems). These user computers 1105, 1110 
may also have any of a variety of applications, including one 
or more development systems, database client and/or server 
applications, and web browser applications. Alternatively, the 
user computers 1105, 1110 may be any other electronic 
device. Such as a thin-client computer, Internet-enabled 
mobile telephone, and/or personal digital assistant, capable of 
communicating via a network (e.g., the network 1115 
described below) and/or displaying and navigating web pages 
or other types of electronic documents. Although the exem 
plary system 1100 is shown with two user computers, any 
number of user computers may be Supported. 

In some embodiments, the system 1100 may also include a 
network 1115. The network can be any type of network famil 
iar to those skilled in the art that can Support data communi 
cations using any of a variety of commercially-available pro 
tocols, including without limitation TCP/IP, SNA, IPX, 
AppleTalk, and the like. Merely by way of example, the 
network 1115 may be a local area network (“LAN”), such as 
an Ethernet network, a Token-Ring network and/or the like; a 
wide-area network; a virtual network, including without limi 
tation a virtual private network (“VPN); the Internet; an 
intranet; an extranet; a public Switched telephone network 
(“PSTN); an infra-red network; a wireless network (e.g., a 
network operating under any of the IEEE 802.11 suite of 
protocols, the Bluetooth protocol known in the art, and/or any 
other wireless protocol); and/or any combination of these 
and/or other networks such as GSM, GPRS, EDGE, UMTS, 
3G, 2.5 G, CDMA, CDMA2000, WCDMA, EVDO etc. 
The system may also include one or more server computers 

1120, 1125, 1130 which can be general purpose computers 
and/or specialized server computers (including, merely by 
way of example, PC servers, UNIX servers, mid-range serv 
ers, mainframe computers rack-mounted servers, etc.). One 
or more of the servers (e.g., 1130) may be dedicated to run 
ning applications, such as a business application, a web 
server, application server, etc. Such servers may be used to 
process requests from user computers 1105,1110. The appli 
cations can also include any number of applications for con 
trolling access to resources of the servers 1120, 1125, 1130. 
The web server can be running an operating system includ 

ing any of those discussed above, as well as any commer 
cially-available server operating systems. The web server can 
also run any of a variety of server applications and/or mid-tier 
applications, including HTTP servers, FTP servers, CGI serv 
ers, database servers, Java servers, business applications, and 
the like. The server(s) also may be one or more computers 
which can be capable of executing programs or Scripts in 
response to the user computers 1105, 1110. As one example, 
a server may execute one or more web applications. The web 
application may be implemented as one or more Scripts or 
programs written in any programming language. Such as 
JavaTM, C, C# or C++, and/or any scripting language, such as 
Perl, Python, or TCL, as well as combinations of any pro 
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gramming/scripting languages. The server(s) may also 
include database servers, including without limitation those 
commercially available from Oracle(R), Microsoft(R), 
SybaseR), IBM(R) and the like, which can process requests 
from database clients running on a user computer 1105,1110. 

In some embodiments, an application server may create 
web pages dynamically for displaying on an end-user (client) 
system. The web pages created by the web application server 
may be forwarded to a user computer 1105 via a web server. 
Similarly, the web server can receive web page requests and/ 
or input data from a user computer and can forward the web 
page requests and/or input data to an application and/or a 
database server. Those skilled in the art will recognize that the 
functions described with respect to various types of servers 
may be performed by a single server and/or a plurality of 
specialized servers, depending on implementation-specific 
needs and parameters. 
The system 1100 may also include one or more databases 

1135. The database(s) 1135 may reside in a variety of loca 
tions. By way of example, a database 1135 may reside on a 
storage medium local to (and/or resident in) one or more of 
the computers 1105,1110, 1115, 1125, 1130. Alternatively, it 
may be remote from any or all of the computers 1105, 1110. 
1115, 1125, 1130, and/or in communication (e.g., via the 
network1120) with one or more of these. In a particular set of 
embodiments, the database 1135 may reside in a storage-area 
network ("SAN) familiar to those skilled in the art. Simi 
larly, any necessary files for performing the functions attrib 
uted to the computers 1105, 1110, 1115, 1125, 1130 may be 
stored locally on the respective computer and/or remotely, as 
appropriate. In one set of embodiments, the database 1135 
may be a relational database, such as Oracle 10 g. that is 
adapted to store, update, and retrieve data in response to 
SQL-formatted commands. 

FIG. 12 illustrates an exemplary computer system 1200, in 
which various embodiments of the present invention may be 
implemented. The system 1200 may be used to implement 
any of the computer systems described above. The computer 
system 1200 is shown comprising hardware elements that 
may be electrically coupled via a bus 1255. The hardware 
elements may include one or more central processing units 
(CPUs) 1205, one or more input devices 1210 (e.g., a mouse, 
a keyboard, etc.), and one or more output devices 1215 (e.g., 
a display device, a printer, etc.). The computer system 1200 
may also include one or more storage device 1220. By way of 
example, storage device(s) 1220 may be disk drives, optical 
storage devices, Solid-state storage device Such as a random 
access memory (“RAM) and/or a read-only memory 
(“ROM), which can be programmable, flash-updateable 
and/or the like. 
The computer system 1200 may additionally include a 

computer-readable storage media reader 1225a, a communi 
cations system 1230 (e.g., a modem, a network card (wireless 
or wired), an infra-red communication device, etc.), and 
working memory 1240, which may include RAM and ROM 
devices as described above. In some embodiments, the com 
puter system 1200 may also include a processing acceleration 
unit 1235, which can include a DSP, a special-purpose pro 
cessor and/or the like. 
The computer-readable storage media reader 1225a can 

further be connected to a computer-readable storage medium 
1225b, together (and, optionally, in combination with storage 
device(s) 1220) comprehensively representing remote, local, 
fixed, and/or removable storage devices plus storage media 
for temporarily and/or more permanently containing com 
puter-readable information. The communications system 
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1230 may permit data to be exchanged with the network 1220 
and/or any other computer described above with respect to the 
system 1200. 
The computer system 1200 may also comprise software 

elements, shown as being currently located within a working 
memory 1240, including an operating system 1245 and/or 
other code 1250. Such as an application program (which may 
be a client application, web browser, mid-tier application, 
RDBMS, etc.). It should be appreciated that alternate 
embodiments of a computer system 1200 may have numerous 
variations from that described above. For example, custom 
ized hardware might also be used and/or particular elements 
might be implemented in hardware, Software (including por 
table Software, such as applets), or both. Further, connection 
to other computing devices such as network input/output 
devices may be employed. Software of computer system 
1200 may include code 1250 for implementing embodiments 
of the present invention as described herein. 

In the foregoing description, for the purposes of illustra 
tion, methods were described in a particular order. It should 
be appreciated that in alternate embodiments, the methods 
may be performed in a different order than that described. It 
should also be appreciated that the methods described above 
may be performed by hardware components or may be 
embodied in sequences of machine-executable instructions, 
which may be used to cause a machine, such as a general 
purpose or special-purpose processor or logic circuits pro 
grammed with the instructions to perform the methods. These 
machine-executable instructions may be stored on one or 
more machine readable mediums, such as CD-ROMs or other 
type of optical disks, floppy diskettes, ROMs, RAMs. 
EPROMs, EEPROMs, magnetic or optical cards, flash 
memory, or other types of machine-readable mediums Suit 
able for storing electronic instructions. Alternatively, the 
methods may be performed by a combination of hardware and 
software. 
While illustrative and presently preferred embodiments of 

the invention have been described in detail herein, it is to be 
understood that the inventive concepts may be otherwise vari 
ously embodied and employed, and that the appended claims 
are intended to be construed to include Such variations, except 
as limited by the prior art. 
What is claimed is: 
1. A method for updating a predicted location of an object 

in a multi-dimensional space having a plurality of (n+1) 
dimensions, the method comprising: 

reading, by a computer system, a first probability density 
function representing a first location of the object on a 
cylindrical multi-dimensional space (IR "xS) of the 
multi-dimensional space; 

receiving, by the computer system, a second probability 
density function representing a second location of the 
object on the cylindrical multi-dimensional space of the 
multi-dimensional space; 

fusing, by the computer system, the first probability den 
sity function with the second probability density func 
tion to form a third probability density function repre 
senting a third location of the object on the cylindrical 
multi-dimensional space of the multi-dimensional 
space; and 

providing, by the computer system, the third probability 
density function as an indication of the updated pre 
dicted location of the object in the multi-dimensional 
Space. 

2. The method of claim 1, wherein each of the first, second, 
and third probability density functions are represented by 
Gauss von Mises distributions defined on the multi-dimen 
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sional space IR 'XS, wherein the first Gauss von Mises dis 
tribution is represented by the parameter set (L. P. C., B. 
T. K.), wherein the second Gauss von Mises distribution is 
represented by the parameter set (LL2, P2, C2, f2., T2, K2), and 
wherein the third Gauss von Mises distribution is represented 
by the parameter set (LLP, PF, CF, B, Tif, Kf). 

3. The method of claim 2, further comprising computing, 
by the computer system, the parameters LLP, PF, CF, B, Tr. Kf 
from analytical algebraic and trigonometric expressions. 

4. The method of claim 2, further comprising computing, 
by the computer system, a prediction error using a Gauss von 
Mises quadrature rule of a chosen order of accuracy. 

5. The method of claim 2, wherein at least one of the first or 
the second Gauss von Mises distributions are generated from 
pluralities of radar, electro-optical, or infrared sensor obser 
Vations. 

6. The method of claim 2, wherein at least one of the first or 
the second Gauss von Mises distributions are generated from 
Gaussian distributions defined on multi-dimensional space 
R+1. 

7. The method of claim 1, wherein the second probability 
density function comprises an observation, wherein the 
observation is related to the first probability density function 
by a stochastic measurement model, and wherein each of the 
probability density functions are defined on a n+1 dimen 
sional cylindrical multi-dimensional space (IR "xS). 

8. The method of claim 7, wherein the first and third prob 
ability density functions are represented by Gauss von Mises 
distributions defined on the multi-dimensional space IR'xS, 
wherein the first probability density function is represented 
by the parameter set (L, P. C. B. T. K) and the third probability 
density function is represented by the parameter set (LL., PF, 
C., fp, Tr. K.), and wherein said second probability density 
function is a vector (ye IRA) hypothesized to be a realization of 
a random vector (h(x,0)--V), wherein h: IR'xS -> IR and V is 
a Zero-mean p-dimensional Gaussian random vector with 
covariance matrix R. 

9. The method of claim 8, further comprising computing, 
by the computer system, the parameters up and Of by solving 
a non-linear least squares problem. 

10. The method of claim 8, further comprising computing, 
by the computer system, the parameters P, fp, and Kf from 
analytical algebraic expressions. 

11. The method of claim 8, further comprising computing, 
by the computer system, the parameter T by solving a non 
linear least Squares problem. 

12. The method of claim 8, further comprising computing, 
by the computer system, the prediction error using a Gauss 
Von Mises quadrature rule of a chosen order of accuracy. 

13. The method of claim 8, wherein the first Gauss von 
Mises distribution is generated from a plurality of radar, 
electro-optical, or infrared sensor observations. 

14. The method of claim 8, wherein the first Gauss von 
Mises distribution is generated from a Gaussian distribution 
defined on the multi-dimensional space R. "'. 

15. The method of claim 8, wherein the observation is 
generated from a radar, electro-optical, or infrared sensor. 

16. A system comprising: 
a processor; and 
a memory coupled with and readable by the processor and 

having stored therein a sequence of instruction which, 
when executed by the processor, cause the processor to 
update a predicted location of an object in a multi-di 
mensional space having a plurality of (n+1) dimensions 
by: 
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64 
reading a first probability density function representing 

a first location of the object on a cylindrical multi 
dimensional space (IR"xS) of the multi-dimensional 
Space, 

receiving a second probability density function repre 
senting a second location of the object on the cylin 
drical multi-dimensional space of the multi-dimen 
Sional space, 

fusing the first probability density function with the 
second probability density function to form a third 
probability density function representing a third loca 
tion of the object on the cylindrical multi-dimensional 
space of the multi-dimensional space, and 

providing the third probability density function as an 
indication of the updated predicted location of the 
object in the multi-dimensional space. 

17. The system of claim 16, wherein each of the first, 
second, and third probability density functions are repre 
sented by Gauss von Mises distributions defined on the multi 
dimensional space IR "xS, wherein the first Gauss von Mises 
distribution is represented by the parameter set (L. P. C., B. 
T. K.), wherein the second Gauss von Mises distribution is 
represented by the parameter set (LL. P. C. f. T. K.), and 
wherein the third Gauss von Mises distribution is represented 
by the parameter set (up, P. C., Br, Tr. K). 

18. The system of claim 17, further comprising computing 
the parameters LLP, PF, CF, Br, Tif, Kf from analytical algebraic 
and trigonometric expressions. 

19. The system of claim 17, further comprising computing 
a prediction error using a Gauss von Mises quadrature rule of 
a chosen order of accuracy. 

20. The system of claim 17, wherein at least one of the first 
or the second Gauss von Mises distributions are generated 
from pluralities of radar, electro-optical, or infrared sensor 
observations. 

21. The system of claim 17, wherein at least one of the first 
or the second Gauss von Mises distributions are generated 
from Gaussian distributions defined on multi-dimensional 
space R''. 

22. The system of claim 16, wherein the second probability 
density function comprises an observation, wherein the 
observation is related to the first probability density function 
by a stochastic measurement model, and wherein each of the 
probability density functions are defined on a n+1 dimen 
sional cylindrical multi-dimensional space (IR "xS). 

23. The system of claim 22, wherein the first and third 
probability density functions are represented by Gauss von 
Mises distributions defined on the multi-dimensional space 
IR 'XS, wherein the first probability density function is rep 
resented by the parameter set (L, P. C. B. T. K) and the third 
probability density function is represented by the parameter 
set (LL.f., PF, CF, B, Tr. K.), and wherein said second probabil 
ity density function is a vector (ye IRA) hypothesized to be a 
realization of a random vector (h(x,0)--V), wherein h: IR'x 
S-> IRA and V is a Zero-mean p-dimensional Gaussian ran 
dom vector with covariance matrix R. 

24. The system of claim 23, further comprising computing 
the parameters up and Clf by solving a non-linear least Squares 
problem. 

25. The system of claim 23, further comprising computing 
the parameters P, R, and K from analytical algebraic 
express1ons. 

26. The system of claim 23, further comprising computing 
the parameter T by solving a non-linear least squares prob 
lem. 
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27. The system of claim 23, further comprising computing 
the prediction error using a Gauss von Mises quadrature rule 
of a chosen order of accuracy. 

28. The system of claim 23, wherein the first Gauss von 
Mises distribution is generated from a plurality of radar, 
electro-optical, or infrared sensor observations. 

29. The system of claim 23, wherein the first Gauss von 
Mises distribution is generated from a Gaussian distribution 
defined on the multi-dimensional space IR''. 

30. The system of claim 23, wherein the observation is 
generated from a radar, electro-optical, or infrared sensor. 

31. A computer-readable memory having stored therein a 
sequence of instructions which, when executed by a proces 
Sor, cause the processor to update a predicted location of an 
object in a multi-dimensional space having a plurality of 
(n+1) dimensions by: 

reading a first probability density function representing a 
first location of the object on a cylindrical multi-dimen 
sional space (IR"xS) of the multi-dimensional space: 

receiving a second probability density function represent 
ing a second location of the object on the cylindrical 
multi-dimensional space of the multi-dimensional 
Space; 

fusing the first probability density function with the second 
probability density function to form a third probability 
density function representing a third location of the 
object on the cylindrical multi-dimensional space of the 
multi-dimensional space; 

providing the third probability density function as an indi 
cation of the updated predicted location of the object in 
the multi-dimensional space. 

32. The computer-readable memory of claim 31, wherein 
each of the first, second, and third probability density func 
tions are represented by Gauss von Mises distributions 
defined on the multi-dimensional space IR "xS, wherein the 
first Gauss von Mises distribution is represented by the 
parameter set (L. P. C. B. T. K.), wherein the second 
Gauss von Mises distribution is represented by the parameter 
Set (LL2, P2, C-2, 32, T2, K2), and wherein the third Gauss von 
Mises distribution is represented by the parameterset (ur, Pr, 
Clf, ff, Tr. Kf). 

33. The computer-readable memory of claim 32, further 
comprising computing the parameters up, Pr, Cr, fp, Tr. Kf 
from analytical algebraic and trigonometric expressions. 

34. The computer-readable memory of claim 32, further 
comprising computing a prediction error using a Gauss von 
Mises quadrature rule of a chosen order of accuracy. 

35. The computer-readable memory of claim 32, wherein 
at least one of the first or the second Gauss von Mises distri 
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butions are generated from pluralities of radar, electro-opti 
cal, or infrared sensor observations. 

36. The computer-readable memory of claim 32, wherein 
at least one of the first or the second Gauss von Mises distri 
butions are generated from Gaussian distributions defined on 
multi-dimensional space IR "1. 

37. The computer-readable memory of claim 31, wherein 
the second probability density function comprises an obser 
Vation, wherein the observation is related to the first probabil 
ity density function by a stochastic measurement model, and 
wherein each of the probability density functions are defined 
on a n+1 dimensional cylindrical multi-dimensional space ( 
R”xS). 
38. The computer-readable memory of claim 37, wherein 

the first and third probability density functions are repre 
sented by Gauss von Mises distributions defined on the multi 
dimensional space IR "xS, wherein the first probability den 
sity function is represented by the parameter set (u, P. C. R. T. 
K) and the third probability density function is represented by 
the parameter set (LLP, Pr, Cr, Br, Tr. Kr), and wherein said 
second probability density function is a vector (ye RP) 
hypothesized to be a realization of a random vector (h(x,0)+ 
V), wherein h: IR "xS ->IRP and v is a zero-mean p-dimen 
Sional Gaussian random vector with covariance matrix R. 

39. The computer-readable memory of claim 38, further 
comprising computing the parameters Llf and Clf by solving a 
non-linear least squares problem. 

40. The computer-readable memory of claim 38, further 
comprising computing the parameters P, Br, and Kf from 
analytical algebraic expressions. 

41. The computer-readable memory of claim 38, further 
comprising computing the parameter T by solving a non 
linear least squares problem. 

42. The computer-readable memory of claim 38, further 
comprising computing the prediction error using a Gauss von 
Mises quadrature rule of a chosen order of accuracy. 

43. The computer-readable memory of claim 38, wherein 
the first Gauss von Mises distribution is generated from a 
plurality of radar, electro-optical, or infrared sensor observa 
t1OnS. 

44. The computer-readable memory of claim 38, wherein 
the first Gauss von Mises distribution is generated from a 
Gaussian distribution defined on the multi-dimensional space 
R+1. 
45. The computer-readable memory of claim 38, wherein 

the observation is generated from a radar, electro-optical, or 
infrared sensor. 
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