
Ambiguous Data Association and Entangled Attribute Estimation

David J. Trawick, Philip C. Du Toit, Randy C. Paffenroth, and Gregory J. Norgard

Numerica Corporation, 4850 Hahns Peak Drive, Suite 200, Loveland, CO, 80538, USA

ABSTRACT
This paper presents an approach to attribute estimation incorporating data association ambiguity. In modern tracking
systems, time pressures often leave all but the most likely data association alternatives unexplored, possibly producing track
inaccuracies. Numerica’s Bayesian Network Tracking Database, a key part of its Tracker Adjunct Processor, captures and
manages the data association ambiguity for further analysis and possible ambiguity reduction/resolution using subsequent
data.

Attributes are non-kinematic discrete sample space sensor data. They may be as distinctive as aircraft ID, or as broad as
friend or foe. Attribute data may provide improvements to data association by a process known as Attribute Aided Tracking
(AAT). Indeed, certain uniquely identifying attributes (e.g. aircraft ID), when continually reported, can be used to define
data association (tracks are the collections of observations with the same ID). However, attribute data arriving infrequently,
combined with erroneous choices from ambiguous data associations, can produce incorrect attribute and kinematic state
estimation.

Ambiguous data associations define the tracks that are entangled with each other. Attribute data observed on an en-
tangled track then modify the attribute estimates on all tracks entangled with it. For example, if a red track and a blue
track pass through a region of data association ambiguity, these tracks become entangled. Later red observations on one
entangled track make the other track more blue, and reduce the data association ambiguity. Methods for this analysis have
been derived and implemented for efficient forward filtering and forensic analysis.

Keywords: Attribute Estimation, Attribute Aided Tracking, Classification Aided Tracking, Multiple Hypothesis Tracking,
Uncertainty Management, Dynamic Bayesian Networks, Late Data

1. INTRODUCTION
In modern tracking systems, time pressures often leave all but the most likely data association alternatives unexplored,
possibly producing track state estimate inaccuracies. If a tracking system application is only interested in estimating
the kinematic properties (position, velocity, etc.) of the targets it encounters, this is generally a sensible approach to
computation reduction. Once the targets pass through a region of data association ambiguity and return to a region of
(relatively) unambiguous data association, the estimates of the kinematic values of a target regain their accuracy as the
influence of the ambiguous region’s data fades away with time. Nevertheless, the state estimates during and shortly after
regions of data association ambiguity may contain inaccuracies, primarily because the estimates of target properties are
being made with observations corresponding to more than just the one target.

Alternatively, if a tracking system seeks to estimate some other properties of its targets, data association errors are far
less benign. This is particularly true if the contribution of an observation does not fade away over time, such as observations
of fixed characteristics of a target (for example, target classification or target ID). Attributes are defined as such non-
kinematic discrete sample space sensor data. They may be as distinctive as aircraft ID, or as broad as a classification of a
target as a friend or foe.

Attribute data may provide improvements to data association by a process known as Classification Aided Tracking
(CAT)1, 2 or Attribute Aided Tracking (AAT). Indeed, certain uniquely identifying attributes (e.g. aircraft ID), when con-
tinually reported, can be used to define the data association (tracks are formed from all observations with the same unique
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aircraft ID). Figure 1 shows how this approach works. Note that in this case there is no estimation of the attribute; it is
assumed that the attribute observation is always correct and always available (given with every observation).

Figure 1. Attribute Aided Tracking Example. The targets are traveling from left to right. Here the attribute is shape, taking on the values
of circle and triangle. The attribute is reported with every observation. The observations are placed in this picture according to the
observed positions in the tracking space. The data association is defined by the attribute in this case, so that there is one circle track and
one triangle track.

However, some attribute reports: (1) may come from “specialized” sensors that provide updates only every once in a
while, (2) may require significant computation time to determine, or (3) may experience significant network delays, thereby
making these data either infrequent, late, or both. Such attribute data may be critical in the sense that they are very valuable
in resolving ambiguities in tracking and combat identification; thus, the motivation to use these data is high even though
there are complexities in applying it. This scenario is illustrated in Figure 2.

Figure 2. Diagram showing the arrival of late/infrequent data at a distributed (networked) tracking/fusion node. Data arrive at the local
node from the remote airborne surveillance radar late because it has a long scan period compared to the local electronically scanned
array radar. Data arrive very late from the satellite-based sensor because they must be routed via satellite links, processed at ground
stations, and then forwarded to the local node. Both remote platforms can provide critical information that can be used to resolve data
association and combat ID ambiguities. Note that here we are addressing issues of dealing with the very late data. The issues of more
recent late data, such as Out Of Sequence Measurements (OOSM), have been considered in detail elsewhere.3, 4

Suppose then we have the following situation. A tracker receives critical, unambiguous attribute data, but the data arrive
infrequently and/or late. Suppose further that the tracker only retains the most likely of its ambiguous data associations,∗

∗Although there are some trackers that retain some data association ambiguity for a short period of time, most trackers are forced to



and that this chosen data association happens to be in error. This is the situation illustrated in Figure 3 when new attribute
data arrive. Note that the new attribute observations implicitly reveal that the previous data association decision was
incorrect.

Figure 3. Issues arising from firm data association decisions. Suppose we have the scenario similar to Figure 1, except that now the
attributes are reported infrequently. The four-pointed stars are the kinematic only observations. A single, firm data association (no
crossing) was chosen incorrectly. The attribute estimates (in the clouds) have been propagated through the chosen data association. The
next data association decision is problematic. For example, a triangle is forced to be on a circle track and a circle is forced to be on a
triangle track.

What is the tracker to do now? The kinematic evidence for how to associate the new observations to the existing tracks
is in direct contradiction to the attribute evidence, and both are nearly certain. A data association decision based only
on the attribute evidence will try to undo the previous data association error, leading to strange kinematic results. A data
association decision based only on the kinematic evidence will corrupt the attribute estimates by effectively forcing the
combination of attribute reports from different targets.

To summarize: attribute data arriving late or infrequently, combined with data associations forced to be unambiguous
and resulting in error, can produce incorrect attribute and/or kinematic state estimation. However, if we retain the fact that a
previous data association was ambiguous, and modify our attribute estimates to reflect this uncertainty, we can be prepared
for whatever and whenever new observation data arrives.

The appropriate modeling of this situation requires the attribute estimate to correctly capture the full attribute uncer-
tainty distribution. Furthermore, correct attribute modeling leads to attribute estimates for a track that depend directly on
the attribute estimates of other tracks, where the tracks involved become linked together by their history of ambiguous data
associations. We call such ambiguously associated tracks entangled.

The rest of this paper is organized as follows. First, we describe Numerica’s Tracker Adjunct Processor (TAP), which
contains our methods for analyzing and managing data association uncertainty and handling late or infrequent data. Next
we show a detailed analysis of a simple example of attribute estimation through a region of data association ambiguity.
Then in Section 4, we generalize this analysis and make it suitable for a recursive implementation. Next, we show some
examples of the algorithm in action. Finally, we summarize the results and draw some conclusions.

2. BACKGROUND
Identifying and quantifying the regions of data association ambiguity is a necessary first step in mitigating the possible
errors resulting from such ambiguity. Numerica’s Bayesian Network Tracking Database (BNTD), a key part of its Tracker
Adjunct Processor (TAP), captures and manages the data association ambiguity for further analysis and possible reduc-
tion/resolution using subsequent data.

One requirement of modern tracking systems is that they provide the best overall situational awareness given the data
and the processing time available. These constraints imply that a lot of interesting, even critical, analysis cannot practically

choose the most likely of their ambiguous data associations at some point.



be performed by the tracker. The key design innovation needed is then to divide the responsibilities of a tracking system
into those that must always be kept up-to-date and those that involve non-real-time decisions. This organization allows
us to process certain computations outside the tracking system proper, either as time allows or as needed by the tracking
system. We have identified this tracking system support process as the Tracker Adjunct Processor,5 or TAP.

Some examples of non-real-time tracking tasks suitable for the TAP include the following: (1) handling of critical,
late or infrequently reported data (the focus of this effort); (2) reconnection of broken tracks; (3) termination of tracks no
longer being observed by the sensor; (4) identification of redundant or spurious tracks caused by not correctly associating
local sensor data to system tracks; (5) detection of the “incompatible” fusion of multi-sensor data to system/network tracks
based on incongruous kinematic or feature properties.

The TAP has as its core component Numerica’s Bayesian Network Tracking Database (BNTD).6, 7 The BNTD uses
an analysis from an associated Multiple Hypothesis Tracking (MHT) system† to form a Bayesian Network10–12 represent-
ing the input observation data and the ambiguous multiple data association hypotheses from the tracker. It can then use
Bayesian network methods to propagate the impact of new evidence throughout the network, and report on the conse-
quences of such new data or hypothesized data to the track picture. This forms a very flexible and general approach for
addressing the non-real-time issues described above.

The core Bayesian network in use by the BNTD is a dynamic Bayesian network, meaning that the network is designed to
model dynamic processes, specifically the kinematic state estimates of its targets. As such, it uses dynamic system models
in much the same way that the filtering and smoothing parts of a tracking system does. Indeed, the BNTD can be thought
of as an unrolled filterer/smoother. This network is extended to retain the ambiguity of the considered data associations by
representing and retaining the ambiguous connections among the observations of interacting track-like paths through the
network. This results in a track picture that is a network or graph of possible paths, rather than collections (hypotheses) of
non-interacting paths. This design facilitates the inclusion of late or infrequent data; just find where the newly arrived data
fits into the network, connect it to the network, and update as necessary.

The BNTD is designed to bring to bear all the evidence available (all the observations input to the system) to forming
the state estimates at any given point. As such, the processing is equivalent to a fixed interval smoother extended to model
data association ambiguity. While this full smoothing of the data is useful for a variety of applications (including forensic
analysis), it is neither desirable nor necessary to always smooth the entire data set. The BNTD is useful for a variety
of applications when only modeling the (forward) filtering of a tracking system. It may do this by performing only a
forward pass through the network, which it may do while building the network. When the BNTD is used in this way, the
computation time necessary is comparable to that of a typical tracking system, with the addition of time for building the
network and the data association ambiguity modeling.

3. A DETAILED ANALYSIS OF A SIMPLE ATTRIBUTE ENTANGLEMENT
We begin by considering how to estimate a simple attribute state along an unambiguous sequence of associated obser-
vations, or a path. Suppose there are several observations of an attribute along a sequence of unambiguously associated
kinematic observations of a target, i.e., along a track with no data association ambiguity. The unambiguous estimation of
the attribute state works as follows.

Suppose we have targets that are either red or not (the attribute to estimate), and we have a sensor that observes whether
a target is red or not. Several parameters of the sensor’s performance are known. Let X ∈ {r, n} be the target’s true red
or not state, and let S ∈ {r, n} be the sensor’s measurement of the target’s state. Then the sensor has the characteristics
p(S = r|X = n) = Pf , the probability of false alarm; and p(S = n|X = r) = Pm, the probability of a missed
detection. From these values we can determine p(S = r|X = r) = 1 − Pm = Pd, the probability of detection, and
p(S = n|X = n) = 1− Pf = Po, the probability of a true no detection.

Let the notation [U, V ] indicate the state of the red or not attribute distribution at some time, where U is the probability
of red and V is the probability of not red. Then a sensor report R of red is the distribution [Pd, Pf ], and a sensor report
N of not red is the distribution [Pm, Po]. Since we keep the probabilities of all possibilities in this notation, it is easily
renormalized by dividing by the sum, i.e., [U, V ] becomes [U/(U + V ), V/(U + V )] after renormalization. This notation

†Such as Numerica’s Multiple Frame Assignment (MFA) tracking system.8, 9



yields a simple update formula: as new sensor attribute reports are received, we multiply the probabilities term by term and
renormalize.‡

Now consider what happens in the case of ambiguous data association; for example, where some data association
choice other than the best rises above some threshold. Figure 4 provides a simple example of data association ambiguity
as it would be represented in the BNTD. Two targets are moving from left to right. At the center of the picture, the targets
were close enough together that it was no longer clear how to associate the observations; did the targets cross or not? The
goal here is to understand how observations of attribute data at various points in the scenario will contribute to the attribute
state estimates throughout the network.

Figure 4. Diagram showing a simple data association ambiguity scenario.

Before diving into the calculation of probabilities, let us examine what is going on in this situation. Even if we know
exactly the attribute values at the inputs A and B, the data association ambiguity will cause the attribute estimations to
become both ambiguous and dependent on each other. For example, if A is red ([1, 0]) and B is not ([0, 1]) (unambigu-
ously), then the values after the possible swap will be completely ambiguous ([.5, .5]), if the swap probability was 0.5.
Furthermore, an observation on path C of red should draw out the probability of red along the D path; observations along
C and D influence each other’s estimates. Does this mutual influence ever go away? Perhaps if some level of purity of the
attribute estimate is achieved, yielding a nearly unambiguous estimate of the attribute.§ But in general, if we know nothing
more concerning the attribute value along these paths (have no more observations), the attribute value estimates along these
paths will remain dependent on each other.

Now let us consider the specifics of how to calculate the probabilities involved in this scenario. The additional ambi-
guity here is that the tracks either cross or do not cross. The associated tracking system provides the probabilities of these
events from its analysis of the data association possibilities: let PX be the probability of crossing. Also let the labeled
paths A,B into and C,D out of the ambiguous region represent the attribute state estimates for those unambiguous paths
outside of the ambiguous region, so that A = [PA, (1− PA)] = [p(A path red), p(A path not red)], etc.

The probability distribution estimate P̂C at point the C can then be computed as a total probability as in equation 1.
Here we enumerate the possibilities of A,B,C,D red or not, and of the targets crossing X or not. For example, the first
line of equation 1 is the product of the probabilities that A,B,C,D are all red and that there was no crossing. The first
sum is the sum of the terms with C red, and the second sum is the sum of the terms with C not red.

P̂C = [ PA PB (1− PX) PC PD +

PA PB PX PC PD +
PA (1− PB) (1− PX) PC (1− PD) +

(1− PA) PB PX PC (1− PD) ,

(1− PA) (1− PB) (1− PX) (1− PC) (1− PD) +

(1− PA) (1− PB) PX (1− PC) (1− PD) +

(1− PA) PB (1− PX) (1− PC) PD +

PA (1− PB) PX (1− PC) PD ].

(1)

‡The attribute estimate is initialized with the prior distribution of the attribute.
§Section 4.6 discusses some approaches to detecting and processing such disentanglements.



Now we would like to transform this formula into an approach to attribute estimation that can be updated in a simple
recursive manner, much like the single-path case above. If the computation generally works in time order,¶ it would be nice
to be able to update with a term by term multiplication as above. Inspection of the column with the PC terms shows that
updates from a new observation ZC = [Pz, (1− Pz)] along the C path can indeed be multiplied term by term, as this new
observation would multiply this way as just a new term along the C path contributing to the original C = [PC , (1− PC)]
estimates.

However, this total probability formula (equation 1) for this simple example shows the dependence of the probability
at the point C on data along the D path, and inspection of the column with the PD terms does not admit a simple term
by term multiplication with new observation data along the D path. A reorganization of the terms in the total probability
formula into more terms will provide a version more suitable for such term by term updates, by explicitly keeping terms
for red and not red outputs, for both paths C and D. This is made as follows, where the terms here are [(C red, D red), (C
red, D not), (C not, D not), (C not, D red)]:

P̂C,D = [ PA PB (1− PX) PC PD +

PA PB PX PC PD ,

PA (1− PB) (1− PX) PC (1− PD) +

(1− PA) PB PX PC (1− PD) ,

(1− PA) (1− PB) (1− PX) (1− PC) (1− PD) +

(1− PA) (1− PB) PX (1− PC) (1− PD) ,

(1− PA) PB (1− PX) (1− PC) PD +

PA (1− PB) PX (1− PC) PD ].

(2)

This reorganization of the equation 1 is the key idea in managing the calculation of the attribute probability estimates
for ambiguous data association. Note that a term is kept for each attribute value (red or not here), for each output path
(C and D in this case). It is this bundle of probability estimates that we call the attribute (estimate) entanglement. It
is organized in such as way as to facilitate the update of attribute estimates as new data are encountered: probabilities
from new data update the terms corresponding to the output path on which the new data are found. It is also organized
to facilitate the determination of the attribute probability estimates for a given path: the terms corresponding to that path
define the marginalization of interest to be computed.

Table 1 shows another way to view the terms of the above equation, and another way to understand the interaction of
the pieces of an attribute entanglement. The dimensions of Table 1 (horizontal or vertical) correspond to the paths leading
out of the ambiguous region. There are entries in the table for every combination of attribute values on the output paths.
Updates and marginalizations take place along the dimension of the path involved. This table may be thought of as a matrix
of values; in general for more output paths than two it is a tensor of values. The values here correspond to the sums in
equation 2; the first sum is in the top left position (C red, D red); the other sums follow around the table counter-clockwise.
We will expand and make all of these notions more explicit in the next section.

C Output Path
C red C not

D Output Path D red C red, D red C not, D red
D not C red, D not C not, D not

Table 1. Example Attribute Entanglement for Two Tracks. This is the tensor form of the attribute estimate entanglement for the data
association ambiguity of Figure 4, going forward.

We note that our prior work concerning ambiguity and uncertainty in attribute estimation5 considered Uniquely Iden-
tifying Attributes (UIAs), attributes whose values must correspond to only one target (such as aircraft IDs). The earlier
¶The insertion of late data is generally repropagated through the network in a time-ordered manner.



approach attempted to estimate the attribute probabilities without the notion of an entanglement. This required a post pro-
cessing step to maintain the uniqueness of the attribute values across the various estimates throughout the system. While
this hints at the type of entanglement described here, unlike the entanglement method it did not generalize well to attributes
whose values are not unique to only one target (such as target classification, friend/foe).

4. THE ALGORITHM
In this Section we will generalize and make specific the notions of the previous Section. In particular, we will discuss
how to recognize when tracks are entangled, how to determine the attribute values involved in an entanglement, how the
attribute entanglement estimate data structure is built and updated from attribute observation data, how a particular path’s
attribute estimate is determined from the attribute estimate entanglement, and how tracks may become disentangled. In
all of this discussion we assume that there is only one attribute to be estimated, and that there are only a finite number
of values that the attribute in question may have. Also, the analysis here is for estimates moving forward in time, for the
forward filtering estimates. The methods for backward filtering and smoothing of entangled attribute estimates are similar.

4.1 Recognizing Entangled Tracks
The tracking system associated with the BNTD delivers its data association problems for further analysis of the data
association ambiguity. The k-best solutions to this data association problem are then determined. If there is a non-
negligible likelihood of solutions other than the best solution, the data association is considered ambiguous and the tracks
involved are considered entangled. If a track extension is part of all the k-best solutions, it is considered to be independent
of the entanglement; all the ambiguity is elsewhere. Similarly, all the non-interacting entanglements of the k-best solutions
are separated into independent entanglements.

The developing entanglements at this stage consist of the input and output nodes, NI and NO (corresponding to
observations in the BNTD’s network, and labeling the paths in and out of the entanglement) of the data association problem,
and the hypotheses h ∈ H from the k-best solutions connecting the input and output nodes. The likelihoods of the
hypotheses P (h) are also available from the k-best solutions. The input nodes are the observations already associated with
the rest of the network, the observations already (possibly ambiguously) associated with tracks. The output nodes are the
observations to be (ambiguously) associated with the network. The input and output nodes define the input and output
paths of the entanglement.

4.2 Determining Joint Probabilities to Estimate
What we are ultimately building in an entanglement is a joint distribution of attribute values and the entangled output paths.
For this we need to know the values the attribute A can have. Let these be denoted as the values v ∈ A. Typically this
will be available from the attribute values present on the input paths. If there are no attribute estimates on any of the input
paths, there will be no attribute entanglement.

Next, we want to assign attribute values to all the output paths to enumerate all possible outcomes. A particular
assignment of attribute values to the output paths will be called a syndrome. This is just a vector of attribute values, where
each output path corresponds to one position in the vector. Given the attribute values and the output paths, all possible
output syndromes s ∈ S can be enumerated.

Thus, the (C red, D red) of Table 1 is one possible output syndrome of the entanglement of Figure 4; the other possible
output syndromes are listed in the Table. There the output paths were mentioned explicitly, where from now on they will
be determined solely by position within the syndrome vector.

4.3 Building an Attribute Entanglement Estimate
Now that all the pieces are ready we can build the attribute entanglement estimate corresponding to the data association
ambiguity in question. Let PQ(v),∀v ∈ A be the distribution provided by an observation Q of an attribute A. Then the



entanglement distribution PE is determined by:

∀s ∈ S : PE(s) =
∑
h∈H

P (h)PNO
(s)PNI

(h−1(s)), (3)

PNO
(s) =

∏
q∈NO

Pq(s(iq)), (4)

PNI
(s) =

∏
q∈NI

Pq(s(iq)). (5)

Note that s(iq) is the value of the syndrome at the index for path/node q, which is just an attribute value. Furthermore,
h−1(s) is the back trace through the hypothesis h of the syndrome s, that is, the input syndrome producing the output
syndrome s. Also, Pq for q ∈ NI is the attribute distribution estimate on the input node/paths, which may be a prior, an
observation node’s distribution, or the attribute estimation on that path from an earlier entanglement. (The entanglement
probabilities PE(s) should be normalized after construction.)

Algorithm 1 describes the steps necessary to build the entanglement data structure.

Algorithm 1 Build the Attribute Entanglement Tensor
procedure BUILDENT(S,H) . Build The Entanglement Tensor PE

for sO ∈ S do . Collect likelihoods by out-syndrome
PE [sO]← 0.0 . Initialize PE for out-syndrome
for h ∈ H do

sI ← h−1(sO) . Pass out-syndrome back through the hypothesis to get in-syndrome
PNO

(sO) =
∏

q∈NO
Pq(sO(iq)) . Get likelihood at h output for out-syndrome

PNI
(sI) =

∏
q∈NI

Pq(sI(iq)) . Get likelihood at h input for in-syndrome
syndromeLike← PNI

(sI) ∗ P (h) ∗ PNO
(sO) . Likelihood for current sO, h combination

PE [sO]← PE [sO] + syndromeLike
end for

end for
return PE . return the Entanglement Tensor PE

end procedure

Since several paths out of an entanglement all share the data in the entanglement estimate, the track state along a path is
extended to include a pointer to the (shared) entanglement. The track state must also include the index, or the entanglement
tensor dimension, of the output path to which it corresponds.

4.4 Updating an Attribute Entanglement
New observations with attribute data must now be used to update the entangled attribute estimate. If a new observation is
part of an ambiguous data association, a new entanglement is generated as before with the new observation on one of the
output paths. If the new observation is unambiguously associated with the existing data, but is associated to a path from an
earlier entanglement, the entanglement is updated with the new data as described here.

Again let S be the set of syndromes for an entanglement E. Let the observation O be on E’s output path p, and let ip
be the index of p in the syndrome vectors. If PE is the distribution of E, this distribution is updated by the observation
attribute distribution PO as follows:

∀s ∈ S : PE(s)← PE(s)PO(s(ip)). (6)

In this manner all the terms of PE receive an update from the new observation O. Note that the entanglement probabilities
PE(s) generally require renormalization after this step.



4.5 Retrieving a Path’s Attribute Estimate
When considering a track we typically want to know the estimates corresponding to that track as opposed to the details of
its entanglements with other tracks. Thus, we need a way to extract the attribute estimation information for a specific track
from the entanglement. The tracks here correspond to the output paths of an entanglement. Since the entanglement is setup
as a joint distribution for all the participating output paths, to get the values for a specific path is to do a marginalization
over all paths except the one of interest. Specifically, continuing with the assumptions as before, if the attribute distribution
estimate on path p is Pp (what we want to find, initialized to all 0):

∀v ∈ A : Pp(v) =
∑
s∈S,

s(ip)=v

PE(s). (7)

4.6 Removing a Track from an Entanglement
Does a track/path, once entangled, ever become disentangled? We would like a way to remove the entanglement processing
and data structures when they no longer provide an advantage over the attribute estimation along non-interacting tracks.
According to the formulas above, the entanglement will not go away as long as there is uncertainty in the data association
or the inputs and outputs to the data association. As long as the input data are uncertain, the entanglement will remain.
Nevertheless, we can attempt to detect when the estimates of either the hypothesis or the output values become nearly
certain.

Initially the tracks were not entangled if for some hypothesis h ∈ H , the probability P (h) was nearly certain. This is
one method to approach disentanglement; whenever the reestimated P (h) becomes 1.0 (within some threshold), we can
say that these tracks are disentangled.

Another approach is to notice when the output syndrome of an entanglement becomes determined, i.e., some attribute
value along every path has a probability near 1.0. This is more useful as we are continually reestimating these values as
the scenario develops.

This is an area we have not fully explored, with several interesting questions remaining. For example, could one
track be extracted from an entanglement, leaving the rest entangled? Could an entanglement be subdivided into several
non-interacting sub-entanglements?

5. SOME SIMPLE EXAMPLES
In this Section we present three examples of the entangled attribute estimation in action. These simple scenarios were all
constructed to contain challenging ambiguous data association examples, but be small enough to easily understand. Our
examples have the targets traveling from left to right. We present two versions of each example, one in diagram form
similar to Figure 3, and one from the output of the TAP system. In the diagrams, the attribute will again be shape. In the
snapshots of actual output, the example attribute is color, where the attribute values for the targets are typically either red
or blue. The diagrams should clarify the snapshots of output as the scenarios become more complex.

The first example is a continuation of the analysis in Section 3 of the scenario of Figure 4. Figure 5 shows the setup,
with a circle and a triangle target moving through a region of data association ambiguity. (The four-pointed stars are
kinematic observations with no attribute information, and the arrows show the data association possibilities above some
threshold.) The probabilities of crossing or not are equal (0.5) in this scenario. After the ambiguity, the attribute estimates
on both paths exiting the ambiguity are ambiguous. (The attribute distribution estimates reported in this Figure and the
following ones are the distributions on the paths out of the entanglement.) The similar actual output snapshot is given in
Figure 6.

Note that even at this point the entanglement has provided something useful: the information that the attribute estimates
are ambiguous. If the attribute estimates were based on a prematurely chosen data association, the reported attribute values
could lead to an incorrect response to the track picture, the consequences of which could lead to engaging the wrong target.
This is not to say that the ambiguous estimate is the perfect situation; if there are both friend and foe targets, we need to
know who’s who. Nevertheless, a true estimate of the uncertainty of the track picture provides the operator with the most
correct information available for any upcoming engagement decisions.



Figure 5. Simple crossing scenario setup. Two targets, traveling left to right, one with an attribute of circle, the other with an attribute
of triangle, cross with a probability of 0.5. The attribute values after the ambiguous crossing are a 50-50 mix of circle and triangle. No
attribute observations have been made after the ambiguous crossing.

Figure 6. Simple crossing scenario snapshot of actual output, using red and blue attributes, corresponding to Figure 5.

In Figure 7 a new attribute observation has arrived and the track picture has been updated. A triangle observation was
reported that was associated with the lower track. Suppose this change was enough to lower the ambiguity probabilities to
where we can claim disentanglement. This effectively resolves the attribute ambiguity of the lower track; it is a triangle.
This also resolves the attribute ambiguity of the upper track; it is a circle. Furthermore, this new observation has essentially
resolved the ambiguity of the prior data association; there was no track swap. Alternatively, if the new observation did
not disentangle the tracks, then the entanglement would be updated and propagated forward. (Figure 8 shows the forward
propagation of the entanglement estimates for actual output.)

Figure 7. Simple crossing scenario after new attribute observation. An attribute observation of triangle on the lower track changes the
attribute estimation of the lower track to triangle and the upper track to circle.

Figure 8. Simple crossing scenario snapshot of actual output, using red and blue attributes, corresponding to Figure 7. Here the new
attribute observation was red on the upper track.



Note that the new attribute observation, updating one track initially, now updates the attribute estimates on all tracks of
the entanglement. This is not a function of how close the tracks are together; the same change would have taken place even
if the tracks had moved far apart. This change is rather a function of the entanglement of the tracks. Similar to its quantum
mechanical namesake, the attribute estimate entanglement produces a kind of peculiar action at a distance within the track
picture as the uncertainty is reduced.

The next example involves three targets traveling from left to right. The upper and lower targets appear to go straight
while the middle target appears to trace out an “S”-shaped path, first becoming ambiguous with the lower target and then
with the upper target. Let the middle target be a circle and the upper and lower targets be triangles at the beginning. This is
the situation in Figure 9. First, the lower two target attributes mix (as in Figure 5) and then the upper two target attributes
mix. Figure 10 shows a snapshot of the first crossing of a similar actual scenario.

Figure 9. S-scenario setup. Three targets travel left to right. At the beginning, the outer two have an attribute of triangle, and the middle
one is circle. The apparently middle target is first ambiguous with the lower target, and then later with the upper target.

Figure 10. Output snapshot of a scenario similar to Figure 9, using red and blue attributes. (The later ambiguity is not in this Figure, but
its output is in the starting (left) portion of Figure 12.)

Some time after the two ambiguous crossings of this scenario, an attribute observation reports that the currently middle
track is a circle. This changes the attribute value of the middle target to circle. This also changes the upper and lower
targets to have a triangle attribute value. Figure 11 shows the resulting scenario.



Figure 11. S-scenario after new attribute observation. An attribute observation of circle on the currently middle target after the two
ambiguities resolves the attribute ambiguity in the entire scenario. The middle target now has an attribute of circle, and the two outer
targets now have an attribute value of triangle.

Figure 12. Output snapshot of a scenario similar to Figure 11, using red and blue attributes. The ambiguity is resolved. (The left of the
figure shows the output of the second ambiguous crossing of the scenario, between the middle and upper targets.)

Note that this latest single observation has cleared up all the ambiguity of the scenario. We now know how the final
targets connect to the initial targets of the scenario. We note here that the implementation we have made also includes
backward attribute estimation and smoothing, so that the ambiguity of the entire scenario may be resolved, including the
region between the two ambiguous crossings (that is, if the probabilities say the tracks can be disentangled).

The next example scenario has three targets traveling from left to right. It is known that the upper target is a circle and
the lower two targets are triangles at the start (left) of the scenario. There is a completely ambiguous crossing of all three
targets in the middle of the scenario. The estimated attribute values upon exit of the ambiguous crossing is the blend of
all the inputs: 1

3 circle, 2
3 triangle, on all output paths. Figure 13 shows the scenario at this time. A similar actual output

scenario is in Figure 14.

Figure 13. Three target ambiguous data association scenario setup. Three targets, traveling from left to right, ambiguously cross in this
scenario. The upper target is a circle, the lower targets are triangles. The attribute estimates after the ambiguous crossing represent a
mix of the attribute values prior to the ambiguous crossing.



Figure 14. Output snapshot of a scenario similar to Figure 13, using red and blue attributes.

After the ambiguous crossing an attribute observation of triangle is reported on the lower target. This disambiguates
the lower target (making it triangle) and removes its triangle contribution from the entanglement of the upper two targets.
The attribute estimates of the upper two targets now reflect the extraction of the lower triangle target. This is the situation
present in Figure 15.

Figure 15. Three target ambiguous data association scenario after new observation. An attribute observation of triangle on the lower
target effectively removes that target from the entanglement. The two upper targets remain entangled with each other. The triangle
observation has pulled one of the triangle targets out of the entanglement.

Figure 16. Output snapshot of a scenario similar to Figure 15, using red and blue attributes.

Note from this example that what remains ambiguous after the uncertainty is reduced is just as important as reducing
or resolving the ambiguity. The updated entanglement allows us to capture the remaining ambiguity in a manner that can
be updated correctly with any subsequent attribute observations.

6. A COMPLEX SCENARIO
In this Section we show the results of entangled attribute processing on a more complex scenario, using data simulated
with a realistic benchmark. This scenario contains multiple networked sensors and multiple interacting targets. This
example shows that the entanglement methods are suitable for working with tasks of greater complexity than the simple
toy problems of Section 5.



An overview of the scenario is shown in Figure 17. This shows the complex interactions of the multiple targets. There
are about 30 targets in this scenario. The duration of the scenario is about 800 seconds. There are six sensors in this
scenario of three types: fixed phased array, rotating phased array, and airborne phased array. The sensors are arranged in a
realistic defensive placement.

One target of the scenario was designed to explicitly add data association ambiguity. This target follows the path
roughly in the middle of Figure 17, moving from center-lower-right toward left center. It becomes ambiguous with two of
the turning targets, first with the turning target near the center of the Figure, then with the turning target off to the left. We
use the color attribute in this example. Let the turning targets have attribute values of blue and the leftward moving target
have an attribute value of red. These interactions then essentially form the interactions of the S-scenario as in Figures 9
and 10, where here the turning targets correspond to the upper and lower targets of the earlier Figures. Figure 18 shows the
ambiguity of the attribute estimates after the times of both regions of explicit ambiguity. The first pair of entangled tracks
have changed to a green color, representing the roughly equal blend of red and blue. After the second ambiguous region,
the exiting tracks are a light blue, representing roughly equal blend of the previous blend with another blue track. At this
time, the three tracks we have been talking about are now entangled.

Figure 17. A view of the full duration of the complex scenario is shown. No attribute estimation is represented in this view.



Figure 18. Here the attribute estimate ambiguity resulting from the ambiguous data association regions is shown, with most of the tracks
having no attribute information, two having an initial (dark) blue attribute and one having a red attribute.

Next, a red attribute observation arrives and is put into the track moving to the left and slightly upward, after the
ambiguous regions. Entanglement processing coveys this updated information to all the tracks that are members of the
entanglement, so as this track becomes red, the others become (darker) blue. Figure 19 shows the changes taking place on
all three tracks involved. The left portion shows the changes near where the new observation was added. The lower right
of this Figure shows the long distance ambiguity resolution resulting from the disentanglement.

Figure 19. A new red observation was added to the leftward moving, non-turning target as shown in upper left, where the track turns
red. The resulting disentanglement between this track and the turning track nearby is seen in the lower left, where the downward moving
track returns to a darker blue. The resulting disentanglement between these tracks and the earlier turning one is seen in the lower right,
where that track has also returned to the darker blue.

7. DISCUSSION
In this Section we discuss several issues related to the understanding and use of entanglements.



How do entanglement updates report changes to the tracking system? Specifically, are attribute estimates pulled
from or pushed to the tracking system? We have tentatively assumed throughout that whenever the tracking system needs
to report the attribute estimate for a track, it will query the TAP/BNTD system. This may not always be an appropriate
method of operation. It may be more appropriate for the TAP/BNTD to send messages of its updates whenever the attribute
estimate of a track changes. This may be necessary, in particular, to communicate that changes have taken place, especially
in the case where the change to an attribute entanglement changes the attribute estimate on a track that the new attribute
observation is not associated with.

What other estimates, if any, should be entangled? Normally in our experience the observations associated with a
track will only update the estimates associated with that track. This experience is primarily from kinematic observations.
The idea of entanglements is contradictory to this experience, where attribute observations contribute to the estimates
for all tracks with which they are entangled. Are there other estimates for which estimate entanglement is appropriate?
Target features, continuous valued characteristics of a target such as signal to noise ratio, would appear to require similar
entanglements. However, the dynamic nature of such estimates will make such analysis more difficult.

How do entanglements affect BNTD efficiency? Earlier we claimed that the BNTD is efficient largely due to the fact
that it is primarily a dynamic Bayesian network, a Bayesian network composed of dynamic models. Attribute estimation,
especially involving estimates on entangled tracks, put the modeling of the BNTD closer to that of a more typical discrete
probability Bayesian network. To maintain the efficiency of the current BNTD, it is recommended that the attributes
modeled be either: (1) attributes with few values, such as friend or foe; or (2) uniquely identifying attributes, such as
aircraft identification number. Also, while the kinematic modeling of the BNTD blends its estimates following ambiguity,
thereby eliminating the need for maintaining duplicate hypotheses, attribute propagation through ambiguity must entangle
the estimates, leading to more complex computation. Thus the management of data association ambiguity in attribute
estimation requires more subsequent processing than kinematic estimation.

With regards to kinematic estimation, several enhancements are being made to the speed of the BNTD’s smoother. A
variant of a Rauch-Tung-Striebel (RTS) smoother13 has been developed that is capable of handling ambiguous associa-
tions. In comparison to the currently used Fraser-Potter type smoother,14 this new smoother should substantially reduce
computation time, while sacrificing a small amount of accuracy. While this smoother is not presently fully incorporated
into the BNTD, prototype code suggests, using the Kalman filter, there is no loss of accuracy with computation time cut
approximately in half. Using an IMM filter, there is a 1− 10% increase in error with computation time roughly a third of
the previous approach. These speed enhancements will be documented in a future publication.

How can we quantify performance changes from entanglements? In lieu of a detailed set of performance tests we
consider here the basic benefits to be derived from attribute entanglement estimate processing. (Any such tests would be
highly dependent on the ambiguity present in the scenarios chosen.) Suppose then that two targets, identified as a friend
and a foe, pass close to each other so as to produce a data association ambiguity. Suppose further that the ambiguity has a
clear but not overwhelming winner: the targets cross with a probability of .3, and travel without crossing with a probability
of .7. The targets then travel far apart with no more attribute (friend or foe) observations. Now suppose the target with the
foe attribute makes a threatening move. Should the foe be engaged?

If there is no representation of data association and hence attribute estimate ambiguity, the answer is clearly yes,
although there is a .3 chance of being wrong. If the ambiguity is available for inspection prior to a fire order, the operator
would probably wait for confirming evidence, since at this point there is an expected fratricide probability of .3.

Now suppose that there is an observation of this attribute, not on the threatening track but on the track with which
it is entangled. Let the new observation report a .99 chance that the associated target is a friend. Then, if there is no
entanglement processing, there is no change to the situation. Perhaps an astute operator can make the connection, but this
is less likely if the targets are now far apart. Entanglement processing, however, updates the attribute estimate of both
the associated track and the entangled track (the threatening track), providing the confirmation needed to the operator for
engagement.



8. CONCLUSIONS
Attribute estimate entanglements have been developed as a means of representing the joint nature of the developing attribute
estimates of the tracks involved in data association ambiguity. The uncertainty present in the ambiguous data association
is essentially propagated along with the attribute estimates, so that any new attribute evidence will update the attribute
estimation on all the tracks involved. New evidence may also lead to the conclusion that a track has become disentangled,
where its attribute estimates are no longer dependent on other tracks.

ACKNOWLEDGMENTS
This work was supported by the US Army Space and Missile Defense Command under contract W9113M-08-C-0083. We
would also like to gratefully acknowledge the support of many others at Numerica.

REFERENCES
[1] Drummond, O. E., “Feature, attribute, and classification aided target tracking,” in [Proceedings of SPIE, Conference

on Signal and Data Processing of Small Targets ], 4473, 542–558 (2001).
[2] Bar-Shalom, Y., Kirubarajan, Y., and Gokberk, C., “Tracking with classification-aided multiframe data association,”

IEEE Transactions on Aerospace and Electronic Systems 41, 868–878 (July 2005).
[3] Chan, S. and Paffenroth, R. C., “Out-of-sequence measurement updates for multi-hypothesis tracking algorithms,” in

[Proceedings of the SPIE, Conference on Signal and Data Processing of Small Targets ], Drummond, O. E., ed., 6969
(2008).

[4] Bar-Shalom, Y. and Chen, H., “IMM estimator with out-of-sequence-measurements,” IEEE Trans. on Aerospace and
Electronic Systems 41, 90–98 (January 2005).

[5] Trawick, D. J., Slobumb, B. J., and Paffenroth, R. C., “A tracker adjunct processing system for reconsideration of
firm tracker decisions,” Proceedings of the SPIE, Conference on Signal and Data Processing of Small Targets 7698-44
(April 2010).

[6] Obermeyer, F. H. and Poore, A. B., “A Bayesian network tracking database,” Proceedings of the SPIE, Conference
on Signal and Data Processing of Small Targets 5428, 400–418 (August 2004).

[7] Slocumb, B. and Trawick, D., “Bayesian Network Tracking Database: Final Report,” Missile Defense Agency SBIR
Phase II Final Report Contract N00178-04-C-3007, Numerica Corporation (July 2006).

[8] Poore, A. B., “Multidimensional assignment formulation of data association problems arising from multitarget track-
ing and multisensor data fusion,” Computational Optimization and Applications 3, 27–57 (1994).

[9] Poore, A. B. and Robertson III, A. J., “A new class of Lagrangian relaxation based algorithms for a class of multidi-
mensional assignment problems,” Computational Optimization and Applications 8(2), 129–150 (1997).

[10] Pearl, J., [Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference ], Morgan Kaufmann
(1988).

[11] Cowell, R. G., Dawid, A. P., Lauritzen, S. L., and Spiegelhalter, D. J., [Probabilistic Networks and Expert Systems],
Springer-Verlag, New York (1999).

[12] Ghahramani, Z., “An Introduction to Hidden Markov Models and Bayesian Networks,” International Journal of
Pattern Recognition and Artificial Intelligence 15, 9–42 (2001).

[13] Rauch, H. E., Tung, F., and Striebel, C. T., “Maximum likelihood estimates of linear dynamic systems,” AIAA Jour-
nal 3(8), 1445–1450 (1965).

[14] Fraser, D. C. and Potter, J. E., “The optimal linear smoother as a combination of two optimum linear filters,” IEEE
Trans. on Automatic Control AC-14, 387–390 (August 1969).


