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ABSTRACT

The MHT/MFA approach to tracking has been shown to have significant advantages compared to single frame methods.
This is especially the case for dense scenarios where there are many targets and/or significant clutter. However, the data
association problem for such scenarios can become computationally prohibitive. To make the problem manageable, one
needs effective complexity reduction methods to reduce the number of possible associations that the data association al-
gorithm must consider. At the 2005 SPIE conference, Part I of this paper1 was presented wherein a number of “gating
algorithms” used for complexity reduction were derived. These included bin gates, coarse pair and triple gates, and mul-
tiframe gates. In this Part II paper, we provide new results that include additional gating methods, describe a hierarchical
framework for the integration of gates, and show simulation results that demonstrate a greater than 95% effectiveness at
removing clutter from the tracking problem.
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1. INTRODUCTION

In surveillance radar applications, it is essential that the sensor provide an accurate track picture of the surveillance area.
Estimates of position and heading are important, but more critical is the maintenance of continuous tracks through clutter,
target maneuvers, and other challenging scenarios. The track picture serves as input to higher-level decision functions that
need to assess target ID, allocate resources, and schedule intercept tasks. For these decisions to be reliable, it is critical that
a minimum amount of track breaks and swaps occur. Thus, pre-filter techniques that can improve tracking performance
relative to breaks and swaps, and can reduce the computational loading on the tracking system, are critical to the overall
mission. The objective of this paper is to develop a complexity reduction pre-filter system that can be deployed with
MHT/MFA tracking systems to significantly reduce the tracker processing load as well as improve tracking performance.

The concept of a complexity reduction pre-filter is as follows. Measurements that are generated on one radar scan
must associate with measurements on following scans to properly associate to a target track. If a measurement cannot
feasibly associate to other measurements on subsequent scans, then there is no point in processing this data because it will
be discarded later and will slow the processor down. Thus, the goal of the complexity reduction pre-filter is to use efficient
(computationally cheap) methods to identify measurements that could feasibly associate together to form a target track
before passing the data to the tracker where more expensive association techniques are employed.

The importance of effective pre-filtering can be seen from a simple example that illustrates the potential computational
complexity of forming these sequences. If one hasM measurements on each of two scans, then the number of comparisons
that one must perform isM2. Over three frames of data, the number isM3. A small problem isM = 100 which implies
M2 = 10, 000 over two frames andM3 = 1, 000, 000 comparisons over three. The task of the pre-filter is to reduce the
number of measurements sent to the tracker as much as possible with the golden rule that “true associations should never
be ruled out!”

The underlying data management process within the pre-filter builds “strings” or “arcs” of measurements∗, one from
each scan, that are dynamically feasible parts of a target track and that can be used by the MHT/MFA tracker to feed an
established track or initiate a new track. By maintaining a list of feasible arcs, we maintain an organized database that
identifies which measurements are potentially target-oriented.

∗We will use the nomenclature of “arc” to correspond to a dynamically feasibly linked set of measurements, one from each successive
frame of data being considered. The arc is a graphically motivated description of connectivity.
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To make the arc concept clear, consider an example where the current scan or “frame” of data is identified by indexk =
1, the prior frame has indexk = 2, etc. Suppose the pre-filter operates withN = 3 scans of data (N is a system parameter),
thus thewindowholds three scans at any one time. An arc is then denoted by the triple[i1, i2, i3] of measurement indices
wherei1 corresponds to the measurement index in frame-1,i2 corresponds to the measurement index in frame-2, andi3
corresponds to the measurement index in frame-3. Ifik = 0, thenno measurementis used for thekth frame. This allows
for a possible missed detection over the window. Notice that we build all possible arcs with feasible associations and we
include the missed detection possibility. The complexity reduction pre-filter database is therefore a list of arcs of the type
[i1, i2, . . . , iN ] that denote the feasibly connected measurements.

The complexity reduction pre-filter described in this paper combines efficient gating algorithms with an efficient data
management process. In Section 2, we describe a collection of gating methods; in particular, we present new gates based
on range and range-rate data. In Section 3, we describe the underlying data management process and the integrated
hierarchical gate application system. Section 4 presents simulation results that demonstrate the effectiveness of the pre-
filter in an airborne surveillance application. Section 5 gives a summary of the paper.

2. GATING ALGORITHMS

Gating is a term that refers to a collection of algorithms that rule out highly infeasible measurement-to-measurement,
measurement-to-track, or track-to-track pairings and/or sequences. Such algorithms are an important step in the complexity
reduction for all tracking algorithms, especially the MHT/MFA techniques. Starting withN “frames of data,” the general
procedure is to generate a sequence of measurements (including missed detections) acrossN frames. To build up these
strings, one starts with a pair of measurements from different frames. From there, one builds triples from two pairs, and
so forth ton-tuples from(n− 1)-tuples. Thus, the first step is to explain how pairs are formed in an efficient manner; the
second is to extend these to the aforementioned strings.

The application of measurement gates is best accomplished in a hierarchy of steps that include: (i) bin or cell gating; (ii)
dynamic feasibility gate tests for either two or three measurements; (iii) multiple frame gating wherein one putsn-tuples
together from two(n− 1)-tuples; (iv) filter prediction gates for track extension; (v) outlier detection for batch estimation,
especially for track initiation; and (vi) fine gating based on likelihood ratios. We address only the first three gates in this
paper.

In this section, we show the derivation of the important gates used in a pre-filter system for MHT/MFA tracking. In
Section 2.1, we summarize the gates that were developed in the prior paper.1 Then in Section 2.2, we describe some new
gates that are based on range-rate measurements. The problem is generally posed within the context of a “frames of data”
because the MHT/MFA data association problem is posed overN data sets or frames of data. In this development, we
assume that biases are removed and any residual biases are addressed by correctly inflating and shaping the measurement
covariances; otherwise, the derivation would need to be modified to account for potential biases directly.

2.1. Summary of gates previously presented

In this section, we summarize the gates that were derived in Part I of this paper.1

2.1.1. Dynamic pair gating for measurements

Given two measurementsp1 andp2, the dynamic pair gate declares the pairing of the two measurements to be dynamically
feasible if a target can move from one measurement to the other at a maximum velocity and to within the noise in the two
measurements over the time interval∆t = t2 − t1 between the two measurements. The derivation of this gate is given in
Part I of the paper,1 and the gate result is

|p2x − p1x| ≤ Vmax|t2 − t1|+ χα,n

√
C1xx + χα,n

√
C2xx

|p2y − p1y| ≤ Vmax|t2 − t1|+ χα,n

√
C1yy + χα,n

√
C2yy (Cuboid Gate)

|p2z − p1z| ≤ Vmax|t2 − t1|+ χα,n

√
C1zz + χα,n

√
C2zz

whereVmax is the maximum target velocity,cov(p1) = C1 andcov(p2) = C2, andχ2
α,n is a Chi-square parameter with

certainty parameterα andn degrees of freedom. An alternate dynamic pair gate is the Spheroid test,

‖p2 − p1‖ ≤ Vmax |t2 − t1|+ χα,n

√
trC1 + χα,n

√
trC2 (Spheriod Gate)
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2.1.2. A predictive pair gate

Now consider two frames of data. One could test each measurementp1 in the first frame with each measurementp2 in the
second frame. If there areM measurements in the first frame andN measurements in the second frame, then there are
M ×N tests that must be performed. One can considerably reduce this number of comparisons through using bin gating
prior to the comparisons to reduce the number of potential parings. The first step is to develop a prediction gate from the
measurementp1 in the first frame to those in the second.

Let Cmax denote the three by three matrix obtained as the maximum over all covariances in the second frame, compo-
nent by component, and letp denote an arbitrary measurement in the second frame. Then,

|px − p1x| ≤ Vmax|t− t1|+ χα,n

√
C1xx + χα,n

√
Cmax xx

|py − p1y| ≤ Vmax|t− t1|+ χα,n

√
C1yy + χα,n

√
Cmax yy

|pz − p1z| ≤ Vmax|t− t1|+ χα,n

√
C1zz + χα,n

√
Cmax zz

defines a cuboid centered atp1 at timet. Next define∆Tmax(t1) = Maximum{|t− t1| |} where the maximum runs over
time t of each measurement in the second frame. Then

|px − p1x| ≤ Vmax∆Tmax(t1) + χα,n

√
C1xx + χα,n

√
Cmax xx

|py − p1y| ≤ Vmax∆Tmax(t1) + χα,n

√
C1yy + χα,n

√
Cmax yy

|pz − p1z| ≤ Vmax∆Tmax(t1) + χα,n

√
C1zz + χα,n

√
Cmax zz

defines the cuboid centered atp1 that contains a measurement that is dynamically consistent withp1.

2.1.3. Combined bin and dynamic pair gating

If there areM measurements on frame-1, andN measurements on frame-2, then when applying the dynamic pair gate
above one would performM ×N tests/comparisons. IfN is “large,” then in order to reduce this number to something like
M × k wherek ¿ N , one generally performs bin or cell gating (see Figure 3 in the Part I paper). The general procedure
for bin gating is as follows. One first forms bins in the second frame. For each measurement in the first frame, sayp1,
one uses the prediction gate to determine which bins in the second frame are contained in or intersected by the prediction
gate. To each of the measurements in the identified bins, one then applies the pair tests (i.e., Spheriod or Cuboid Gate Test)
to determine which pairs can be ruled out. At the conclusion of this procedure, one has pairs of measurements that might
emanate from the same target and has ruled out those that cannot.

The choice of the size of the bin can be determined adaptively ora priori. Bins should not be too small nor too large
and can be based on the size of the prediction gate. Once the prediction gate is defined relative to the measurementp1, one
needs an efficient method for returning all measurements from those bins that the prediction gate contains or intersects. We
have found that fixed bin sizes and hash tables work extremely well. Other choices might be octrees or quadtrees.

Finally, we stress that ifM andN are “small,” then one should bypass bin gating because the numberM × N is
small. Also, ifM or N is large and the other is small, then one would generally bin the frame with the largest number of
measurements. Thus, we generally assumeM ≤ N ; otherwise, the frames should be interchanged.

2.1.4. Multi-frame gating

As discussed in the introduction, strings (arcs) of measurement sequences are used in the pre-filter process. These strings
can be directly used by the MHT/MFA tracker as potential extensions of a track or to initiate new tracks. This is accom-
plished as follows. Letik denote the index to a measurement from framek. A triple [ik, im, in] is built from two pairs
[ik, im] and[im, in] that contain an overlap of one measurementim. A quadruple[ik, im, in, ip] is built from two triples
[ik, im, in] and[im, in, ip] with the requirement of an overlap of two measurements[im, in]. An N -tuple is built from two
(N − 1)-tuples with the requirement of an overlap of(N − 2) measurements. If one has a dynamicK-tuple test, one can
apply the test after the construction of theK-tuple to eliminate theK-tuple and its further use in the construction of strings.

2.2. New gates based on range-rate data

We now present three gates that utilize range-rate data. The gates in Sections 2.2.2 and 2.2.3 are extensions to the prior
work.1
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2.2.1. A range and range-rate dynamic pair gate: fixed platform case

In this section, we develop a range and range-rate dynamic pair gate for the case where the sensor is stationary in an inertial
reference frame. The case of a moving platform is more complex and is discussed in Section 2.2.2, but the general approach
and goals are the same. Letr(t) be the range to the target at timet, andṙ(t) be the range-rate. The fundamental theorem
of calculus and the rectangle and trapezoid integration rules yield

r(t2)− r(t1) =
∫ t2

t1

dr(s)
ds

ds

=
dr(c)
dt

∆t1 (mean value theorem)

=
dr(t1)

dt
∆t1 +

1
2

d2r(c)
dt2

(∆t1)2 (rectangle rule)

=
1
2

(
dr(t1)

dt
+

dr(t2)
dt

)
∆t1 − 1

12
d3r(c)
dt3

(∆t1)3 (trapezoid rule)

for somec betweent1 andt2, and where∆t1 = t2− t1. Now, one can use each of these to derive gates. First, consider the
trapezoid rulecase. Usingr(ti) = ri + νi andṙ(ti) = ṙi + µi whereνi ∼ N (0, σri

) andµi ∼ N (0, σṙi
), one can derive

r2 − r1 =
1
2
(ṙ1 + ṙ2)∆t1 − ν1 + ν2 +

1
2
(µ1 + µ2)∆t1 − 1

12
d3r(c)
dt3

(∆t1)3

|r2 − r1 − 1
2
(ṙ1 + ṙ2)∆t1| ≤ |ν1|+ |ν2|+ 1

2
(|µ1|+ |µ2|)|∆t1|+ 1

12
|d

3r(c)
dt3

(∆t1)3|

≤ 3σr1 + 3σr2 +
3
2
(σṙ1 + σṙ2)|∆t1|+ 1

12
Jmax|∆t1|3

where we have used a threeσ-value as an upper bound on the errors and whereJmax is an upper bound onmax{ d3r(t)
dt3 | t1 ≤

t ≤ t2 }.
In a similar fashion, one can derive a gate based on therectangle rule. The result is

|r2 − r1 − 1
2
(ṙ1)∆t1| ≤ |ν1|+ |ν2|+ |µ1||∆t1|+ 1

2
|d

2r(c)
dt2

(∆t1)2| (1)

≤ 3σr1 + 3σr2 + 3σṙ1 |∆t1|+ 1
2
Amax|∆t1|2 (2)

where we have used a threeσ-value as an upper bound on the errors and whereAmax is an upper bound onmax{ d2r(t)
dt2 | t1 ≤

t ≤ t2 }.
Likewise, one can derive a gate based on themean value theorem. The result is

|r2 − r1| ≤ |ν1|+ |ν2|+ |dr(c)
dt

(∆t1)|
≤ 3σr1 + 3σr2 + Vmax|∆t1|

where we have used a threeσ-value as an upper bound on the errors and whereVmax is an upper bound onmax{ |dr(t)
dt | | t1 ≤

t ≤ t2 } over the interval[t1, t2].

2.2.2. A range and range-rate dynamic pair Gate: moving platform case

We now extend the results in the previous section to the case of a moving platform. The difficulty with a moving platform
is that the estimates on the derivatives ofr(t) are more complicated. The gate in (1) is the one that we develop here for
the range and range-rate gate test for a moving platform. LetRt(t) andRp(t) denote position vectors to the target and
platform, respectively, and defineR(t) = Rtarg(t)−Rp(t) to be the position vector from the platform to the target. Then
r(t) =

√
R(t) ·R(t) is the distance to the target andṙ(t) denotes the range rate. Bothr(t) andṙ(t), as well as the azimuth,
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are measured by the sensor. In deriving gates in this case, the only difference is in the estimates forṙ(t) andr̈(t). Observe
now the following:

ṙ(t) =
Ṙ(t) ·R(t)

r(t)
=

Ṙt(t) ·R(t)
r(t)

− Ṙp(t) ·R(t)
r(t)

r̈(t) =
R̈(t) ·R(t)

r(t)
+

Ṙ(t) · Ṙ(t)
r(t)

− ṙ2(t)
r2(t)

The big difference between the stationary and moving platform is in the bounding ofṙ(t) andr̈(t). Here are the bounds.

|ṙ(t)| = | Ṙ(t) ·R(t)
r(t)

| = | Ṙt(t) ·R(t)
r(t)

− Ṙp(t) ·R(t)
r(t)

|

≤ ‖Ṙt(t)‖+ ‖Ṙp(t)‖

|r̈(t)| = |R̈(t) ·R(t)|
r(t)

+
|Ṙ(t) · Ṙ(t)|

r(t)
+

ṙ2(t)
r2(t)

|r̈(t)| ≤ ‖R̈(t)‖+
‖Ṙ(t)‖2

r(t)
+

ṙ2(t)
r2(t)

≤ ‖R̈t(t)− R̈p(t)‖+
‖Ṙt(t)− Ṙp(t)‖2

r(t)
+

ṙ2(t)
r2(t)

≤ ‖R̈t(t)‖+ ‖R̈p(t)‖+
(‖Ṙt(t)‖+ ‖Ṙp(t)‖)2

r(t)
+

ṙ2(t)
r2(t)

≤ (‖R̈t(t)‖+ ‖R̈p(t)‖) +
(‖Ṙt(t)‖+ ‖Ṙp(t)‖

)2
(

1
r(t)

+
1

r2(t)

)

Starting from the previously derived estimate

|r2 − r1 − 1
2
(ṙ1)∆t1| ≤ |ν1|+ |ν2|+ |µ1||∆t1|+ 1

2
|d

2r(c)
dt2

(∆t1)2|
for somec betweent1 andt2. Thus, we have

|r2 − r1 − 1
2
(ṙ1)∆t1| ≤ |ν1|+ |ν2|+ |µ1||∆t1|+ 1

2
|d

2r(c)
dt2

(∆t1)2|
≤ |ν1|+ |ν2|+ |µ1||∆t1|+
1
2
(∆t1)2

(
(‖R̈t(c)‖+ ‖R̈p(c)‖) +

(‖Ṙt(c)‖+ ‖Ṙp(c)‖
)2

(
1

r(c)
+

1
r2(c)

))

for somec betweent1 andt2. Now, we bound, approximate, and evaluate terms as follows.

Vtmax = Maximum {‖Ṙt(c)‖ | c betweent1 andt2 }
Atmax = Maximum {‖R̈t(c)‖ | c betweent1 andt2 }
Vpmax = Maximum {‖Ṙp(c)‖ | c betweent1 andt2 }
Apmax = Maximum {‖R̈t(c)‖ | c betweent1 andt2 }

Now Vtmax andAtmax are parameters that are used to bound the motion of the targets.Vpmax can be evaluated by knowing
the velocity of the platform over the time interval connectingt1 andt2. We can approximateVpmax andApmax

Vpmax = Maximum{‖Ṙp(t1)‖+ Error in‖Ṙp(t1)‖, ‖Ṙp(t2)‖+ Error in‖Ṙp(t2)‖}

Apmax =
‖Ṙp(t2)− Ṙp(t1)‖

|∆t1| +
Error in‖Ṙp(t2)‖+ Error in‖Ṙp(t1)‖

|∆t1|
rmin = Maximum{r1 − |ν1|, r2 − |ν2|}
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wherein the errors in the data are incorporated into the bounds. Using the bounds|νi| ≤ 3σri
and|µi| ≤ 3σṙi

, one has

|r2−r1− 1
2
ṙ1∆t1| ≤ 3σr1 +3σr2 +3σṙ1 |∆t1|+ 1

2
(∆t1)2

(
Atmax +Apmax+

(
Vtmax+Vpmax

)2
(

1
rmin

+
1

r2
min

))
(3)

Note that an alternate gate test is

|r1−r2+
1
2
ṙ2∆t1| ≤ 3σr1 +3σr2 +3σṙ2 |∆t1|+ 1

2
(∆t1)2

(
Atmax +Apmax+

(
Vtmax+Vpmax

)2
(

1
rmin

+
1

r2
min

))
(4)

Given two measurements(ri, ṙi), one would apply both tests.

2.2.3. A range and range-rate multiframe gate

We now develop a range and range-rate multiframe measurement gate that evaluates a correlation hypothesis of a sequence
of measurements for their dynamic feasibility. The test is implemented as a linear Kalman filter with a state of range and
range-rate. The measurement state used in the filter is also the range and range-rate. The inclusion of process noise ensures
that the gate is robust against target maneuvers.

We show the derivation of the gate for the case of three frames, but the approach easily generalizes to anN -frame gate.
Without loss of generality, let the three-frame measurements be denoted as{z1, z2, z3}, where the measurement times are
{t1, t2, t3}. We assume that the three measurements are time-ordered, i.e.,t1 ≤ t2 ≤ t3. Each measurement is the vector
zi = [ri, ṙi]T with covariance

Ri =
[
σ2

ri
0

0 σ2
ṙi

]

The bearing measurementbi is not used in this three-point gate.

The multiframe gate is implemented as a linear Kalman filter with the initial filter state and covariance being the first
measurement,

x1 = z1 andP1 = R1 (5)

Let ∆tij = tj − ti, and the state transition matrix and process noise covariance be denoted as

F(∆t) =
[
1 ∆t
0 1

]
, Q(q, ∆t) = q

[
∆t3/3 ∆t2/2
∆t2/2 ∆t

]
(6)

Next, the filter state and covariance are predicted tot2, the time of the second measurement,

x2|1 = F(∆t12)x1, (7)

P2|1 = F(∆t12)P1F(∆t12)T + Q(q, ∆t12), (8)

where we use a process noiseq that consists of a fixed user-defined partq0 that models target acceleration, and an adaptive
partApmax that incorporates the own-ship motion:

q = q0 + Apmax (9)

The process noise for the own-ship acceleration is estimated as

Apmax = min
{

Ap0 , Âp + εAp

}
, (10)

Âp =
1

∆t12
‖vp(t2)− vp(t1)‖ (11)

wherevp(ti) is the own-ship Cartesian velocity vector. The acceleration estimateÂp in (11) is only necessary if the
aircraft navigation system is not able to provide the own-ship acceleration; otherwise the estimate is determined asAp =
max {‖ap(t1)‖, ‖ap(t2)‖}, whereap(ti) is the own-ship Cartesian acceleration vector. The termεAp is the3σ acceleration
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error in the reported own-ship acceleration, andAp0 is an upper bound on the platform acceleration that prevents the
estimate from becoming unreasonable in case of faulty own-ship acceleration reports.

Now, applying the regular Kalman filter equations, we compute the innovation matrix,

S2 = R2 + HP2|1HT

with measurement residualν2 = z2 − x2|1, and trivial observation matrixH = I . The first gate test is now

νT
2 S−1

2 ν2 < χ2
α,n (12)

If the inequality (12) does not hold, the measurements{z1, z2, z3} will be rejected as a feasible triple, otherwise, the
computation continues with the next Kalman filter step:

x2|2 = x2|1 + K2ν2, P2|2 = P2|1 − K2SKT
2

with the Kalman gain
K2 = P2|1HT S−1

2

Next we repeat the Kalman filter prediction and computex3|2, the covarianceS3, and the normalized innovationνT
3 S−1

3 ν3.
We repeat the Chi-square test as in Eqn. (12), and accept or reject the triple as feasible based on the outcome.

3. PRE-FILTER DATA MANAGEMENT

At the center of the complexity reduction pre-filter system is an efficient data management mechanism that organizes
the measurements so that tests (the gating algorithms described in Section 2) can be applied. For each scan, or frame,
of radar measurements the data are held in a data structure that enables “arcs” between possibly feasible associations to
be established. Strings of measurements connected by arcs are then held in the data structure; the length of the string
is determined by the window sizeN set in the pre-filter system. As these strings are established by initial gating tests,
subsequent gating tests are applied that may remove some arcs. In this way, the gates are applied in anhierarchical
manner using the computationally cheapest gates first and the more expensive gates last. In this section, we explain the
methodology for establishing arcs, applying the moving window data management system, and applying the hierarchical
gating process.

3.1. Arc addition process: arc extension

To describe the arc formation process, let the measurements obtained in the most recent scan be identified by the setZ1

and theith measurement in this scan be identified aszi
1. Thus,Zk = {zim

k }Mk
m=1, for Mk measurements in thekth most

recent scan. The measurementzi
k is used to represent a vector of parameters such as range, bearing, elevation, range-rate,

and possibly others. Let the window be of sizeN , thus the frames of data in the window are{Z1,Z2, . . . ,ZN}.
If measurementzi1

1 on frame-1 associates withzi2
2 on frame-2, then we say that an arc[i1, i2] exists between the two

measurements. The feasible association is established through gating tests. Extending the concept, if both measurements
gate with measurementzi3

3 in frame-3, then the arc[i1, i2, i3] is established. Continuing in this way over allN frames,
an arc defined by[i1, i2, i3, . . . , iN ] is established when all pairwise gating tests indicate association feasibility. We call
this anN -scan arc, or string, and this data is what is stored within the pre-filter data structure. One can envision aK ×N
matrix of indices whereK is the total number of feasible arcs stored within the pre-filter processor.

When a new frame of data is obtained (say frame-n for new), the bin gate algorithm is applied for each measure-
ment in this frame,zim

n , m ∈ {1, . . . , Mn}. Each measurement is gated with the measurements in the prior frames
{Z1,Z2, . . . ,ZN−1}. Note that as some measurements are eliminated, some arcs are also removed from consideration,
which removes some measurements from consideration in the prior frames. For measurementzim

n in frame-n, if we find,
for example, that the following pairs are feasible via the pair gate tests:

[zim
n , zi1

1 ], [zim
n , zi2

2 ], . . . [zim
n , ziN−1

N−1 ] (13)

then we would form the extended arc[im, i1, i2, i3, . . . , iN−1] if the the arc[i1, i2, i3, . . . , iN−1] existed in the data
structure. While the initial pair tests in (13) are accomplished with the bin gate, each pair is subsequently tested with a
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Figure 1. Description of the moving window process within the complexity reduction pre-filter.

sequence of dynamical pair gates before the feasible association is allowed. After the arc is established, then additional
multiframe gates may also be applied. This is described in more detail in Section 3.3.

To summarize, feasible measurement strings, or data arcs, are established in the pre-filter using the following steps:

• Pair Gating. Each measurement in the new data frame is gated with the priorN − 1 frames of data forN -scan
processing. First, a prediction gate using the bin gate process is applied to identify feasible associations. For each
feasible association identified by the bin gate, additional dynamic pair gates are applied. The pre-filter allows any
number of dynamic pair gates to be applied in a successive order (a hierarchy).

• Arc Extension. Using theN − 1 sets of feasible associations (i.e, lists of measurements in the prior frames that pass
the pair gates), we find arcs in the data structure that have measurement indices in these sets. For each arc that is
identified, we extend the arc with the index of the candidate measurement from the current frame.

• Missed Detection Extension. To allow for possible missed detections within the window, we also create extension
arcs with the “miss” in the appropriate arc column. For all arcs that existed in the window, we create an extension
arc with “0” in the current frame column. These arcs have the form[0, i1, i2, . . . , iN−1]. We also create new arcs
of the form[im, 0, 0, . . . , 0], for im = 1, . . . , Mn, to support the possible initiation of new targets.

3.2. Window shift process: the moving window data structure

Prior to the arc addition process described in the previous section, the complexity reduction pre-filter will first conduct a
window shiftprocess to allow the new frame of data to be added to the window. The process is outlined in Figure 1. We
start with a data array of sizeK ×N , for K arcs in the list and a window size ofN . First, the indices in the earliest frame
of data in the window are dropped from the arc. In effect, we slide the window and leave behind the associations from the
earliest frame of data in the window. The arc indices that remain are shifted to the right to make room for the indices in
the new frame of data. In performing the drop-and-shift process, some number of arcs will become redundant because the
dimension of the arcs has been reduced. To see this, consider the following example. Suppose the following two arcs are
initially present in the data structure:

[i1, i2 , . . . , iN−1, iN ] (14)

[i1, i2 , . . . , iN−1, i′N ], iN 6= i′N (15)

The two arcs differ only in the final indices,iN and i′N . When the final column of indices is dropped during the shift
process, the two arcs become identical. Thus, one of the two redundant arcs must be removed. Through the use of efficient
software data structures, the redundant arcs can be automatically dropped with a minimal number of operations.

After the redundant arcs are removed, the next step is to conduct arc extension (see Section 3.1). When this is complete,
a new arc array of dimensionL × N will exist as shown in Figure 1. In general,L will be different fromK since some
redundant arcs were dropped and then new arcs were added with the new frame.
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3.3. Gating hierarchy

We explain now how a gating hierarchy can be used to make the complexity reduction pre-filter system efficient. As
mentioned previously, the concept of using a hierarchy is to apply the computationally cheapest gates first, and then apply
the more expensive gates last. Using this sequence, one can achieve the highest efficiency in the process. There are two
parts to the hierarchy: the bin/pair gate component, and the multiframe component.

Bin/Pair Gate Component. We first apply the bin gate between measurements in the current frame-n and all the prior
frames{1, 2, . . . , N − 1}. The bin gate uses a predictive gate to form an initial set of feasible pairs. Suppose the candidate
measurement index on frame-n is identified asimn . Suppose on frame-1 the bin gate identifies the set{ij11 , . . . , ijP

1 }
as feasible associations. The pair gate hierarchy operates by stepping through the combinations[imn , i

jp

1 ], wherep =
1, . . . , P , and applying the sequence of specified dynamical pair gates. Whenever a gate rules out a feasible association,
the measurementijp

1 is no longer considered and all remaining gating tests are bypassed. In the end, some subset of
{ij11 , . . . , ijP

1 } will remain and these measurements are passed along to the arc extension step.

Multiframe Gate Component. After pair gating has been applied, and the arcs have been extended with the feasible
associations, then the multiframe gates can be applied. To apply the multiframe gates, we step through the arc list in the
data structure. For each arc in the list, we apply a sequence of multiframe gates (cheapest first). Whenever one gate rules
out an arc, the arc is removed and the application of gates to that arc is stopped. IfK is the size of the multiframe gate,
and the window size isN , then ifK < N there are several options for applying the multiframe gate. One is to apply the
gate only to the firstK non-zero indices in the arc (i.e., to the firstK measurements in the window, skipping over missed
detections). A second and more expensive option is to apply theK-tuple gate to all possible combinations in the arc that
involve the candidate (first frame) measurement. The second approach obviously provides a more complete test, but is also
more computationally expensive.

3.4. Pre-filter output to the tracker

The output of the pre-filter is the arc list stored in the data management system. This list identifies feasible strings of
measurements that could correspond to actual targets. The MHT/MFA will directly use the arc list within its track man-
agement system. For each string where measurements in the priorN − 1 frames were used in a track hypothesis, then the
MHT/MFA tracker may use the current measurement to update that track if the filter and score gates successfully pass.
Also, depending on the tracker’s extension/initiation logic, if the number of non-zero (i.e., not a miss) measurements in the
arc isM out ofN , then the tracker can attempt to initiate a track on these measurements.

Finally, it should be pointed out that theN -scan pre-filter process can be applied to a traditional single-frame tracking
system, in addition to the MHT/MFA tracker. The tracker extension/initiation process just needs to be integrated with the
arc list data. If this is not possible, then the alternative is to apply a measurement pruning process to the arc list based
on anM of N criteria. If an arc is defined by[i1, i2 , . . . , iN ], and at leastM of the {im} are non-zero, then the
complexity reduction pre-filter would pass the measurement with indexi1 on to the tracker. Otherwise, the measurement
i1 is considered clutter and is discarded. This pruning process cuts out all the clutter measurements that do not feasibly
form arcs with a “substantial” number of measurements in it. One drawback of this pruning approach is that the initiation
of a track will be delayed until at leastM measurements from the target have been obtained. The delay is avoided if the
tracker can receive the entire arc list in one message (i.e., handle prior frame measurements) and applies the initialization
process to those measurements.

4. SIMULATION RESULTS

To evaluate the performance of the complexity reduction pre-filter, a prototype was developed that implements the moving
window structure, the gating hierarchy, and the specific gating algorithms (bin, predictive pair, dynamic pair, and dynamic
triple). The prototype has been integrated with an airborne (moving platform) surveillance radar simulation model, and
gating performance metrics have been established.
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4.1. Simulation scenario description

The sensor model used in the simulation study is one typical of an airborne surveillance radar. The beamwidth of the
radar is modeled to be6◦, and the range resolution is modeled as 30 m. The scan period is modeled as 10 sec. The radar
possesses a Doppler processing capability and can generate target range rate measurements. A tracker processes the range,
bearing, and range-rate measurements. It is a conventional single hypothesis (global nearest neighbor) tracker that employs
a two-model IMM filter with low-noise and high-noise nearly-constant-velocity models. The tracker employs conventional
filter gate processing to identify feasible measurements for association.

In the scenario, there is one maneuvering target in clutter. The target pulls two 2 g maneuvers and one 4 g maneuver
within a 1200 sec scenario. For this scenario, we varied the clutter density (discussed below) to assess the effectiveness
of the pre-filter. The trajectory duration lasts 1200 sec in the simulation; with a radar scan period of 10 sec, there are on
average 120 target measurements over the trajectory. We ran 10 Monte Carlo runs.

A random clutter model was established for the sensor model that allowed the complexity reduction pre-filter to be
stressed. We set up the clutter generation so that all returns were restricted to a defined box around the target. The size of
the box, and the number of clutter returns per box, were set by parameters; thus, the clutter density around the targets could
be controlled. The clutter measurements were uniformly placed in the box, and then the coordinates were transformed to
range and bearing to form the clutter measurements. For the clutter range-rate measurement, we accounted for the fact that
the clutter returns would be spread over the Doppler spectrum when the airborne platform was moving. Three principle
components exist in the airborne radar clutter spectrum2: the mainbeam clutter, the altitude clutter, and the sidelobe
clutter. Typically the mainbeam clutter, which has a known Doppler value, is removed with a “Doppler notch” in the radar
signal processor. The altitude clutter spectrum is broader than the mainbeam clutter spectrum but is always centered on
zero Doppler. Meanwhile the sidelobe clutter, which results from returns obtained through the antenna sidelobes in all
directions, has a clutter spectrum that is uniform over the Doppler range[−2v/λ, 2v/λ], wherev is the platform velocity
andλ is the radar wavelength. Thus, any measurements obtained from sidelobe clutter have a range rate value that is
uniformly distributed over[−v, v].

To study the impact of clutter on the complexity reduction pre-filter system, we will assume the clutter is the result of
sidelobe clutter. Thus, each clutter measurement will have a range rate value that is obtained from a random number that
is uniformly distributed on[−v, v]. This is a reasonable assumption since the mainbeam clutter will have been removed by
the radar Doppler processor. The addition of altitude clutter could be considered as well.

4.2. Results

To evaluate the pre-filter in a standalone mode, we set the window size toN = 3. We requiredM = 3 measurements in
an arc, i.e., 3-of-3, before the measurement in the first (most current) frame was allowed to be passed to the tracker. In
scenarios with missed detections, we would need a 3-of-4 or 4-of-5 rule, but we did not simulate missed detections in this
study. By checking the source of those measurements (target or clutter) that were passed out of the pre-filter, we could
score the clutter suppression capability. We performed this analysis for varying levels of clutter density.

The gating hierarchy employed in the study was as follows: (i) a bin gate with anxy prediction gate; (ii) anxy dynamic
pair gate; (iii) a range dynamic pair gate; (iv) a range and range-rate dynamic pair gate; and (v) a range and range-rate
three-point gate. These gates were formulated in Section 2.

Table 1 below shows the statistics for the case where the clutter density was 5 returns in the20 × 20 km box near the
target on each scan. This should be viewed as a “severe” clutter density case, which may or may not be realistic, but was
created specifically to stress the gates. The table shows how each of the gates progressively remove more clutter. The pair
gates each knock out about 35% of the arcs (all containing associated clutter returns), while the triple gate knocks out 58%
of the clutter arcs. When taken in whole, the net effect is that more than 95% of the clutter has been removed from the
input. Other statistics of interest in the table are as follows. The “gates falsely removed” corresponds to cases where truth
arcs are removed; as shown, no cases of the removal of truth occurred. The “missed gate opportunities” corresponds to
cases where arcs contained both truth and clutter and should be removed; as shown, only 48 of these arcs survive. Within
these arcs, 26 unique clutter measurements exist, and these are allowed to pass through (thus the 95.63% of 595 clutter
measurements). The “target returns removed” corresponds to the first two returns in the scenario; this happens because of
the 3-of-3 window specified for this study, and is an artifact that results from a simulator interface limitation (prior frame
measurements could not be sent to the tracker).
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Table 1.Complexity reduction pre-filter gating statistics for the clutter density case of 5 per 20×20 km.
Gate Statistic
xy dynamicPairGate

calls to gate 7667
gates passed 4922 ( 64.20%)
gates falsely failed 0 ( 0.00%)
missed gate opportunities 49 ( 1.00%)
Percentage arcs ruled out 35.80% (2745 of 7667)

rangedynamicPairGate
calls to gate 7 6782
gates passed 4491 ( 66.22%)
gates falsely failed 0 ( 0.00%)
missed gate opportunities 49 ( 1.09%)
Percentage arcs ruled out 37.69% (2291 of 6078)

rangerangeRatedynamicPairGate
calls to gate 4181
gates passed 2809 ( 67.18%)
gates falsely failed 0 ( 0.00%)
missed gate opportunities 49 ( 1.74%)
Percentage arcs ruled out 36.23% (1372 of 3787)

rangerangeRatethreePointGate
calls to gate 394
gates passed 165 ( 41.88%)
gates falsely failed 0 ( 0.00%)
missed gate opportunities 48 ( 29.09%)
Percentage arcs ruled out 58.12% (229 of 394)

Clutter removed 95.63% of 595 clutter reports
Targets removed 2 target returns

Table 2.Gating statistics for various clutter densities
Clutter Density Case Clutter removed

5 clutter returns per 20×20 km 95.63% of 595 clutter reports
5 clutter returns per 30×30 km 98.66% of 595 clutter reports
5 clutter returns per 50×50 km 99.66% of 595 clutter reports

Table 2 shows the clutter removed statistics for three different clutter densities. In the most severe case (5 returns
in 20 × 20 km) we obtain 95% removal effectiveness. As we relax the density to 5 returns in50 × 50 km, we achieve
better than 99% clutter removed. This broader distribution of clutter is more realistic, thus one can expect the complexity
reduction pre-filter to contribute to very significant improvements in tracker processing and runtime performance.

In addition to evaluating the gating statistics, we assessed the impact of the pre-filter on the tracker performance. Table
3 summarizes the tracking metrics of interest over the run. As shown, the presence of severe clutter causes the tracker
to degrade substantially. However, with the complexity reduction pre-filter removing most of the clutter data, the tracker
performance is optimal. This emphasizes the point that, in addition to reducing the tracker’s computational load, the
pre-filter improves the tracker’s performance.

5. SUMMARY

In this Part II paper, we have extended the complexity reduction work presented in our prior paper.1 First, we developed
several new range and range-rate gates. We described a data management system that provides an efficient process for
maintaining all feasible arcs within a moving window. We also described a hierarchical gate application process that enables
the computationally cheep gates to be applied first, and the more expensive gates to be applied last. Simulation results for a
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Table 3.Tracker metrics summary for the clutter density case of 5 per 20×20 km and 10 MC runs.
Track Metric Without Pre-Filter With Pre-Filter

Number of tracks produced (on MC run #1) 7 1
Track completeness 60-80% 100
Cumulative switches 2.5 0
Cumulative breaks 4.8 0

Redundant track ratio 1.2 - 1.4 1.0
Spurious track ratio 0.4 0.0

stressing clutter condition showed that the complexity reduction pre-filter system was able to remove a substantial amount
of the clutter in a simulated airborne surveillance radar scenario. The impact on tracking was evaluated where it was shown
without the pre-filter, the tracking performance was severely diminished, but with the pre-filter employed the performance
was optimal.
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