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ABSTRACT

Effective multi-sensor, multi-target, distributed composite tracking requires the management of limited network
bandwidth. In this paper we derive from first principles a value of information for measurements that can be used
to sort the measurements in order from most to least valuable. We show the information metric must account
for the models and filters used by the composite tracking system. We describe how this value of information can
be used to optimize bandwidth utilization and illustrate its effectiveness using simulations that involve lossy and
latent network models.
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1. INTRODUCTION

Distributed tracking systems which share track data such as associated measurement reports (AMRs) between
multiple nodes on a network typically have a limited resources, including limits on the amount of bandwidth
available, as well as limited resources that can be expended by a sensor in illuminating or detecting targets.
For example, the desired send rate of data from a particular node on such a network may in fact exceed the
maximum send rate supported by the network.

In such a cases, the sending node must prune the data. Pruning can be used to limit the data that is
transmitted by the node into the network, as well as managing the resources of sensors so that a given sensor
will not expend resources on objects for which its local data would be pruned. Both problems are of interest,
though we present our results in the context of pruning for network optimization.

Rather than pruning randomly or arbitrarily, the pruning algorithm should prioritize the track data based on
the value it provides to network track picture. Schmaedeke and Kastella1 demonstrated the use of discrimination
gain for a related problem in sensor resource management. Others have shown the use of mutual information2

to optimize sensor coverage with multiple sensors. The discrimination gain is also known as the Kullback-Leibler

divergence (KLD).3

The KLD provides a measure of the difference in information between two probability distributions. Schmaedeke
and Kastella showed how to use the KLD for measuring the relative value that multiple sensors provide to a given
track. As they demonstrated, in the case of Gaussian distributions, the KLD can be simplified into a sum of four
terms. In this paper, we show a useful kinematic interpretation of these terms. Furthermore, we show that for
an Interacting Multiple Model Filter, the KLD can be simplified considerably beyond what has been shown in
previous work by others. As our numerical experiments show, the KLD implicitly and automatically takes into
account multiple factors which contribute to the value of an AMR, including sensor location and quality, target
maneuvers, and time since last update.

This paper is structed as follows. Sections 2.1 and 2.2 set the context of priotization and pruning of AMR
data. Section 2.3 shows our intepretation of the KLD for the Kalman filter and the IMM filter. Finally, Section 3
demonstrates the use of the KLD for pruning AMR data in numerical experiments.
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2. PRUNING AND PRIORITIZATION

2.1 Prioritization via scoring

Consider a stream of AMRs M = {m1,m2 . . .} emanating from a single tracking node A. (A given AMR mi

consists of an association to a track, and kinematic measurement data with timestamp). In a perfect network,
all AMRs would be sent and received instantaneously, and recipient nodes B,C,D... could have an exact copy
of the track picture that exists at A.

Real networks have limited bandwidth. Therefore, in order to avoid saturating the network, A must choose
a subset of M to transmit based on the available bandwidth. In particular, we consider the following con-
straint: given a sequence of transmit opportunities at times t1, t2 . . ., the network has bandwidth available for
the transmission of a single AMR.

Thus, at time tk, A must decide which of the AMRs that have been generated up to time tk, but which

have not yet been transmitted, should be transmitted at the current opportunity. Inherently, A has a queue of
untransmitted AMRs stored up. At each transmit opportunity, it chooses one AMR from this queue to send.

Furthermore, the AMR queue can be represented in a general fashion using a priority queue. Each entry in
a priority queue has a numerical score, and the highest-scoring entry of the queue is chosen first. The use of
a priority queue to store the untransmitted AMRs boils the problem space down to the choice of a function to
compute the score of a given AMR. Different scoring functions will affect the received track picture in different
ways at B,C,D.... The particular function to use depends on the desired metrics to optimize at the recipient
nodes.

Let us formalize the notation a bit. Consider a set of AMRs M̃ ⊂ M that has already been transmitted, and
a set of AMRs M̄ = M \ M̃ that has not been transmitted. The elements of M̄ can be prioritized from highest
to lowest score by defined a scoring function f : M̄ → R such that for any given m̄ ∈ M̄ , f(m̄) is a function of
the track attributes that can be derived from the set of AMRs M̃ ∪{m̄} relative to the track attributes that can
be derived from the set of AMRs M̃ . In other words, we score m̄ by considering the track picture both with and
without the AMR m̄. Thus, given n AMRs in M̄ , the priority queue Π(M̄) that can be derived from M̄ and f

is of the form
Π(M̄) = {(m̄i, f(m̄i)}

n
i=1.

At this point, there is a subtle wrinkle in the formulation that has important computational implications:
Π(M̄) is not a subset of Π(M̄ ∪ {m̄}), because the score of some or all elements of M̄ could change if m̄ is
actually transmitted. The computational implication is that without further constraints or assumptions, one has
to re-score the entire priority queue whenever a single AMR is transmitted. For systems producing AMRs at a
high rate, but with few transmit opportunities, this could get computationally expensive.

In our view, there is minimal impact to further constrain the priority queue so that re-scoring is not required.
In other words, once f(m̄) is evaluated for a given AMR m̄, it is not re-evaluated.

2.2 Pruning

If the transmit opportunities tk persistently occur at a lower rate than AMRs become available, then the network
link becomes oversubscribed and the size of M̄ could grow without bound. This is where the benefit of the pri-
oritization scheme outlined previously becomes most apparent. (Note that if the network link is only transiently
oversubscribed, then the prioritization acts as a traffic shaper by smoothing out the transmit rate, but all AMRs
are still eventually sent. The effects on the track picture in such a case are not the subject of this paper).

In order to prevent the unbounded growth of M̄ , once an AMR m̄ ∈ M̄ reaches a predetermined age, it
should be pruned from M̄ in order to prevent transmitting it. The reasoning of this additional step is that we
assume the scoring function f would, if re-evaluated on older AMRs, return a very low score for them. Since the
scores of existing AMRs in M̄ are not re-evaluated, there is no way to account for this other than by including
a pruning function that is explicitly time-based.



2.3 The Kullback-Leibler Divergence

First introducted by Kullback and Leibler in their 1951 paper,3 the Kullback-Leibler divergence provides a
measure of the difference between two probability distributions. For density functions p and q defined on the
space Ω, the general form of the KLD is given by the formula

DKL(p, q) =

∫

Ω

p(x) log
p(x)

q(x)
dx (1)

Strictly speaking, DKL is not a distance metric because DKL(p, q) 6= DKL(q, p). In the context of information
theory, the KLD measures the additional number of bits required to code a message drawn from the distribution
P when using a code that is optimal for the distribution Q relative to the number of bits required when using a
code that is optimal for P .4 So, if P has more or different information relative to Q, then we expect DKL(p, q)
to measure both how much additional information is present in P , and how different the information of P is
than Q.

The KLD can be used directly as a scoring function as follows:

1. For a given AMR m̄ ∈ M̄ associated to a particular track, compute two different track states:

(a) First, compute the track state of the track using m̄ and any other AMRs from M̄ associated to the
track; let the associated track state distribution be P .

(b) Then, propagate the track state to the time of m̄ but do not update the track with m̄. Let the
associated track state distribution be Q.

2. f(m̄) = DKL(P,Q).

KLD and Normal Distributions. When p and q are normal densities with means µp, µq, covariances Σp,Σq,
and dimension k, (1) can be simplified further to

DKL(p, q) =
1

2

(

(µp − µq)
TΣ−1

Q (µp − µq) + tr(Σ−1
Q ΣP)− log

(

|ΣP|

|ΣQ|

)

− k

)

. (2)

Since many tracking systems make use of Gaussian distributions to represent track states, the formula (2)
may be used for computing the score. In this context, the three terms in that formula can be interpreted in both
kinematic and information-theoretic terms:

• (µp−µq)
TΣ−1

Q (µp−µq) measures the difference (relative to the predicted covariance before update) between
the predicted and updated track state mean. If m̄ represents an AMR on a maneuvering track, then this
term would be larger than if the track is not maneuvering (in which case the prediction is more likely to
be close to the updated value). This term is a therefore a measure of the information difference between
P and Q. Even if P and Q have exactly the same covariance, P may be providing different information
because the mean is different.

• log
(

|ΣP |
|ΣQ|

)

measures the relative change in the volume of the covariance ellipsoid. If P has a much smaller

covariance than Q, this term is smaller than if the covariance of Q is similar in magnitude to the covariance
of P . Thus, an AMR m̄ which greatly reduces the covariance causes the score of m̄ to be larger.(We also
note that for a Kalman filter,|ΣP | < |ΣQ| regardless of the measurement.) So, we can see that this term is
a measure of the additional information present in P compared to Q. Even if the mean is unchanged, P
may have a smaller covariance and therefore be providing more information than Q.

• The term tr(Σ−1
Q ΣP) is more subtle. We consider two cases:



1. |ΣQ| ≈ |ΣP |. In this case, |Σ−1
Q ΣP | = |ΣP |

|ΣQ| ≈ 1. Since the determinant is the product of the

eigenvalues, for every eigenvalue of Σ−1
Q ΣP which is close to zero, there must be an eigenvalue which

is very large. In order for Σ−1
Q ΣP to have an eigenvalue close to zero, there must be a subspace on

which (ΣPx, x) is close to zero and (ΣQx, x) is not close to zero (under the constraint ‖x‖ = 1), or
vice versa.

We can interpret this to mean that tr(Σ−1
Q ΣP) is large only if the covariance ellipsoids of ΣP and ΣQ do

not have the same shape. If the shape is similar, then the contribution of this term will be moderate.
In other words, this term is measuring information difference even if the amount of information is
roughly the same.

2. |ΣP | ≪ |ΣQ|. In this case, |Σ−1
Q ΣP | ≈ 0. However, this does not preclude some eigenvalues of Σ−1

Q ΣP

from being large (and therefore tr(Σ−1
Q ΣP) could still be large). By a recursive argument, we can show

that either there is a subspace on which condition 1 above applies, or there is no such subspace. If
there is no such subspace, then under the assumption |ΣP | ≪ |ΣQ| on all subspaces, the eigenvalues
of Σ−1

Q ΣP must be uniformly close to zero.

We have shown that when tr(Σ−1
Q ΣP) contributes to the KLD, it is measuring the difference in information

due to the change in shape of the covariance ellipsoid.

KLD and Interacting Multiple Model Filters.

The Interacting Multiple Model5 (IMM) generalizes the concept of a Kalman filter. Given r motion models
each defined on a state space Ω, the IMM propagates and updates r filters, each with a modal probability µi.
So, we can view the state space of the IMM as a hybrid discrete-continous space Γ = Ωr

Now, consider (1) evaluated on Γ, where

p(x) = (µp
1p1(x1), . . . , µ

p
rpr(xr)))

and q(x) is defined similarly.

So, we have:

DKL(p, q) =

∫

Γ

p(x) log
p(x)

q(x)
dx (3)

=

r
∑

i=1

∫

Ω

· · ·

∫

Ω

µ
p
i pi(xi) log

µ
p
i pi(xi)

µ
q
i qi(xi)

dx1 · · · dxr (4)

=

r
∑

i=1

∫

Ω

· · ·

∫

Ω

µ
p
i pi(xi)

(

log
µ
p
i

µ
q
i

+ log
pi(xi)

qi(xi)

)

dx1 · · · dxr (5)

=
r

∑

i=1

µ
p
i

(

log
µ
p
i

µ
q
i

+DKL(pi, qi)

)

(6)

In the final formula (6), we that the updated IMM filter represented by p is scored against q using a sum of

terms of the form log
µ
p

i

µ
q

i

+DKL(pi, qi) where the weights in the sum are the updated modal probabilities. The

term log
µ
p

i

µ
q

i

measures how much the modal probability i has changed; in particular, if µp
i is much larger than µ

q
i

then this term will contribute. The term DKL(pi, qi) is the standard KLD applied to the individual filter states
pi and qi.

So, in summary the KLD effectively prioritizes increases and changes in information, which for IMM filters
amounts to the following:

• Difference in predicted versus updated mean.
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Figure 1. Straight line target flying between two range-bearing sensors. Each sensor generates an AMR every two seconds.

The network bandwidth allows for sending only one; the other is immediately pruned. The symbols in the figure represent

which sensor’s AMR was transmitted at each track update based on the KLD scores. Since each sensor is a range-bearing

sensor, as the target moves away from sensor 1 and approaches sensor 2, the KLD scores shift from valuing sensor 1 AMRs

to valuing sensor 2 AMRs.

• Decrease in the determinant of the covariance.

• Difference in covariance ellipsoid shape.

• Difference in IMM modal probabilities

3. NUMERICAL EXAMPLES

3.1 Multiple sensors

First, we consider a simple scenario with one target and two sensors, as shown in Figure 1. The sensors are both
range-bearing sensors, so that the effective spatial resolution of each sensor depends on the range to the target.

An AMR is generated by each sensor once every 2 seconds, and we have only one transmit opportunity every
2 seconds. Furthermore, for the sake of simplicity, any AMRs which are not transmitted are pruned immediately.
Thus, exactly half of the AMRs are transmitted.

We filter using an NCV extended Kalman filter, and score using (2). Our analysis in Section 2.3 suggests that
as the target moves away from Sensor 1 and towards Sensor 2, the Sensor 1 AMRs should be pruned more often
and the Sensor 2 AMRs less often; the reason is that Sensor 2 will contribute more strongly to the shrinkage in
the covariance than Sensor 1. Additionally, we do not expect the change in mean or the change in covariance
ellipsoid shape to contribute significantly. Figures 1 and 3 show that this is precisely what happens. As shown
previously,1 we see that the KLD score can be used for sensor resource management, since it can automatically
determine the value that a sensor provides to a given track.

3.2 Single sensor

Now, we consider a scenario with only one sensor, but six targets. The targets begin the scenario in straight-line
motion, after which one of the targets peels off in a high G turn. The target motion is shown in Figure 4. Every
two seconds, the sensor generates an AMR on all six targets simultaneously. As shown in Figure 5, the KLD
score is much higher for the maneuvering target during the turn.

Figure 6 shows the same scenario, but with only one out of six AMRs transmitted. Each group of six
AMRs is scored using the KLD, and only the highest-scoring AMR is transmitted. Before the turn, the update
rate of the targets is fairly uniform. As a given target goes longer without getting an update, the covariance
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Figure 2. KLD scores and RMS position error for the scenario shown in Figure 1.
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Figure 4. Target motion. The colored circles represent the AMR’s that are available to transmit.

shrinkage term in the KLD score grows until eventually that track scores the highest and gets updated. Once the
maneuver begins, the maneuvering target achieves a higher effective update rate than the other targets during the
maneuver because the IMM weight term and the prediction error term dominate. So, we see that the KLD score
provides a means of automatically identifying the important information on a track for both non-maneuvering
and maneuvering targets.

For comparison, consider Figures 8 and 9, which also show the results of sending only one out of every six
AMRs; however, instead of using the KLD score to prioritize, each track gets updated at an equal rate using
exactly one sixth of the AMRs available. The position and velocity error is significantly degraded.
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Figure 5. Metrics on the scenario shown in Figure 4. The blue circles in the KLD score represent the KL scores of the

maneuvering target. The KLD score is substantially higher during the manuever.
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Figure 6. Same scenario as in Figure 4, but only one out of every six AMR is transmitted. The KLD is used to score each

group of six AMRs, and the highest scoring from each group is transmitted; the remainder are discarded. The high score

on the maneuvering target during the turn results in a higher update rate on that target.
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Figure 7. Metrics on the scenario shown in Figure 6. The position accuracy degrades slightly on all targets, but a fairly

uniform bound is maintained on all targets including the maneuvering target.
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Figure 8. Same scenario as in Figure 4, but only one out of every six AMR is transmitted. Instead of scoring via the

KLD, each target gets updated at an equal rate.
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Figure 9. Metrics on the scenario shown in Figure 8. Position and velocity error are degraded significantly during the

maneuver.


